	Olympiads Publication Education	the metamorphos	BRILLIANT INTERNAT	2
	Class-XII (Syll	abus and Sa	mple Que	stion Paper)
Diffe Func Equa Prob Devi	ation, Coordinate Geome oability, Permutation and iation, Random Variable	on, Application o efinite Integration, e try, Solid Geome Combination, Cen and Its Distributi	f Derivatives, Application o try : (Straight tral Tendency, on, Non-Verbal	Inverse Trigonometric of Integral, Differential Line, Plane, Sphere), Variance and Standard Reasoning (I.Q. Test)
The	e Actual Question Paper Con	tains 40 Questions. Tl	ne Duration of the	e Test Paper is 60 Minutes
1.	The lines a (a ² + 1) x – y + common line for: (A) Exactly one value of a (C) More than two values of (E) None of these	(B) Ex	$x + (p^2 + 1) y + 2$ exactly two values of a	
2.	If the pair of lines $px^2 + 2$ the circle into four sectors another sector, then (A) $3p^2 - 2pq + 3q^2 = 0$ (C) $3p^2 + 2pq + 3b^2 = 0$ (E) None of these	s such that the area (B) 3p		ctors is thrice the area of
3.	There are three circles with is the point of intersection sum of the distances from (A) $3\sqrt{5}$ cm (B) 12 (E) None of these	of tangents to these points of contacts is	circles at their ?	
4.	Read the following statem Statement 1: Length of L Statement 2: The length of (A) Statement 1 is true, but s (B) Statement 1 is false, but s (C) Both the statements are t	atus rectum of the par of Latus rectum of the tatement 2 is false. statement 2 is true.		

(D) Both the statements are false.

5. If α and β are eccentric angles of a focal chord of an ellipse, then the eccentricity of the ellipse is?

(A) $\frac{Cos\alpha + Cos\beta}{Cos(\alpha + \beta)}$ (B) $\frac{Sin\alpha + Sin\beta}{Sin(\alpha - \beta)}$ (C) $\frac{Cos\alpha - Cos\beta}{Cos(\alpha - \beta)}$ (D) $\frac{Sin\alpha + Sin\beta}{Sin(\alpha + \beta)}$

(E) None of these

6. Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = \sqrt{5}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to?

- (A) $\frac{2}{3}$ (B) $\frac{\sqrt{3}}{2}$ (C) 2 (D) 3
- (E) None of these
- 7. The value of $\int \frac{\sin x + \cos x}{\sqrt{1 \sin 2x}} dx$ is equal to? (A) $\sqrt{\sin 2x} + c$ (B) $\sqrt{\cos 2x} + c$
 - (C) $\pm(\sin x \cos x) + c$ (D) $\log(\sin x \cos x) + c$
 - (E) None of these

8. The primitive of the function $f(x) = \left(1 - \frac{1}{x^2}\right)a^{x + \frac{1}{x}}$, a > 0 is ?

(A)
$$\frac{a^{x+\frac{1}{x}}}{\log_e a}$$
 (B) $\log_e a$, $a^{x+\frac{1}{x}}$ (C) $\frac{a^{x+\frac{1}{x}}}{n}\log_e a$ (D) $n\frac{a^{x+\frac{1}{x}}}{\log_e a}$

(E) None of these

9. If y(0) = 1, then the solution of $\frac{dy}{dx} = y\sin 2x$ is? (A) $y = e^{\sin x}$ (B) $y = e^{\sin x^2}$ (C) $y = e^{\sin^2 x}$ (D) $\log y = e^{\sin^2 x}$ (E) None of these

- 10. Assume that a spherical rain drop evaporates at rate proportional to its surface area. If its radius originally is 3mm and 1 hour later it has been reduced to 2mm, then which one of the following is the expression for the radius of the rain drop at any time ?
 - (A) r = 3 t and $0 \le t \le 3$ (B) r t = 3 and $t \le 3$ (C) $3 t^2$ and $0 \le + \le 3$ (D) $r^2 t^2 = 3$ and $t \le 3$
 - (E) None of these

11.	\vec{a} , \vec{b} , \vec{c} and \vec{d} and the position vectors of the points A, B, C, D such that no three of then are collinear and $\vec{a} + \vec{c} = \vec{b} + \vec{d}$, then ABCD is a?						
	(A) Rhombus	(B) Rectangle					
	(C) Square	(D)Parallelogram					
	(E) None of these						
12.	The shortest distance between the lines	$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ is ?					
	(A) $\sqrt{3}$ (B) $2\sqrt{30}$ (E) None of these	(C) $5\sqrt{30}$ (D) $3\sqrt{30}$					
13.	A random variable has the following probability distribution.						
	n: 0 1 2 3 4	5 6 7					
	P(n): 0 2p 2p 3P p2	2p2 7p2 2p					
	The value of p is?						
	(A) $\frac{1}{10}$ (B) -1	(C) $-\frac{1}{10}$ (D) Both (B) and (C)					
	(E) None of these						
14.	Let R_+ be the set of all positive real numbers. Let f: R [4, ∞ [: f(n) = x ² + 4. Then the f ⁻¹ i given by?						
	(A) $f^{-1}: [4, \infty[\rightarrow R_+: f^{-1}(y) = \sqrt{y-4}]$	(B) f^{-1} :] 4, ∞ [$\rightarrow R_+$: $f^{-1}(y) = \sqrt{y-4}$ (D) f^{-1} : [4, ∞ [$\rightarrow R_+$: $f^{-1}(y) = \sqrt{y-4}$					
	(C) $f^{-1}: [4, \infty] \to R_+: f^{-1}(y) = \sqrt{y+4}$						
	(E) None of these						
15.	If $\mathbf{A} = \left[\frac{C \operatorname{os} \theta}{-Sin\theta} \frac{Sin\theta}{Cos\theta}\right]$, then \mathbf{A}^n is equal to?						
	(A) $\left[\frac{C \operatorname{os}^{n} \theta}{-Sin^{n} \theta} \frac{Sin^{n} \theta}{Cos^{n} \theta}\right]$	(B) $\left[\frac{Cos\theta^n}{-Sin\theta^n}\frac{Sin\theta^n}{Cos\theta^n}\right]$					
	(C) $\left[\frac{\cos n\theta}{-\sin n\theta}\frac{\sin n\theta}{\cos n\theta}\right]$	(D) $\left[\frac{\cos n^2 \theta}{-\sin n^2 \theta} \frac{\sin n^2 \theta}{\cos n^2 \theta} \right]$					
	(E) None of these						

ANSWERS								
1. A	2. C	3. A	4. B	5. D				
6. B	7. D	8. A	9. C	10. A				
11. D	12. D	13. A	14. A	15. C				