CODE: AE-PL

M.Tech. Common Entrance Test, PGCET - 2010

Polymer Science

Time: 2 Hours Max. Marks: 100

Read the following instructions before answering the test

- i) Write / Darken the particulars of your identity, Test Seat Number and affix your signature on the OMR Response Sheet before the start of the test.
- ii) All Questions have multiple choices of answers, of which only one is correct.
- iii) Mark the correct answer by completely darkening only one oval against the Question number using Black Ink Ball Point pen only.
- iv) There will be no negative evaluation with regard to wrong answers.

 Marks will not be awarded if multiple answers are given.
- v) Do not make any stray mark on the OMR Response sheet. For rough work, use blank page on the question paper.
- vi) Taking the question paper out of the test hall is permitted only after the full duration of the test.
- vii) Use of only non-programmable calculator is permitted.
- viii) START ANSWERING ONLY AT THE SPECIFIED TIME WHEN THE INVIGILATOR GIVES INSTRUCTIONS.

MARKS DISTRIBUTION

PART – I 50 Questions: $50 \times 1 = 50 \text{ Marks}$ PART – II 25 Questions: $25 \times 2 = 50 \text{ Marks}$

Total = 100 Marks

	w of viscosity relates	is found to combine 80	
	y of pressure and rate of angula		
	tress and rate of angular deform		
	tress, viscosity and rate of angu		
(d) Viscosi	ty and rate of angular deformat	ion beatenpared of me	
2. Flow at cons	stant rate through a tapering pip	pe is	
(i) Steady flo	ow (ii) Uniform flow	(iii) Unsteady flow	(iv) Non- uniform flow
The correct	answer is;		
(a) (i) and	(ii) (b) (i) and (iv)	(c) (ii) and (iii)	(d) (ii) and (iv)
3. In laminar fl velocity?	ow, maximum velocity at the c	entre of pipe is how ma	ny times to the average
(a) Two	(b) Three	(c) Four	(d) None of them
4. Reynolds nu	mber for non-circular cross sec	tion is,	
(a) V. 4P/v	(b) V.P/v	(c) V.2P/4v	(d) V.P/4v
where, V= m wetted perim	nean velocity, v = kinematic vis		ross section area to the
5. When the rel	ationship between Reynolds nu	amber and the friction fa	actor is represented by a
straight line,	the flow is said to be,		
(a) Isentropi	c (b) Laminar	(c) Turbulent	(d) Vertex
6. Equation of a	continuity is based on the princ	iple of conservation of	
(a) Mass	(b) Energy	(c) Momentum	(d) None of the above
7. Average mo	lecular weight of air is about		
(a) 15	(b) 59	(c) 29	(d) 23

(a) Molarity	(b) Normality	(c) Formality	(d) Molality
2			e fed to expeller, the cake
recovery of oil.			
(a) 90.57	(b) 95.90	(c) 93.75	(d) 87.90
. Moles per unit vo	lume can be expressed		
(a) lb mol of solut	e/ft ³	(b) g mol of solut	re/lt
(c) g mol of solute	e/cm³	(d) All the above	
. A wet paper pulp is	found to contain 71% w	rater. After drying it is	found that 60% of the
original water has b pulp,	een removed. Calculate	the mass of water rem	oved per kilogram of wet
(a) 0.326 kg	(b) 0.426 kg	(c) 0.526 kg	(d) 0.626 kg
. In a test 20 lb of C ₃	H ₈ is burned with 400 ll	o of air to produce 44	lb of CO ₂ and 12 lb of CO,
what was the percen	nt excess air?		
(a) 32 %	(b) 20 %	(c) 28 %	(d) 35 %
. In a open system, the	ere is		
(a) No exchange in 6	energy and mass of the s	ystem,	
(b) Exchange of mas	ss and energy with the st	urroundings	
(c) Exchange of ma	ss with the surroundings	some standard and second	
(d) Exchange of ene	rgy with the surrounding	g not the mass	
. The value of gas cor	nstant, R is J/	K. mole	
(a) 8.314	(b) 2.000	(c) 6.778	(d) 0.187
. The effect of pressur	e on entropy is apprecia	ble in	
(a) Crystals	(b) Solids	(c) Liquids	(d) Gases

	(a) Calculating absolute ent	tropies of sub	stances at differ	rent temperature	S
	(b) Evaluating entropy char	nges of chem	ical reaction		
	(c) Both (a) and (b)				
	(d) None of the above				
Ka D					
17. Th	e quantitative effect of temper	erature on ch	emical equilibri	um is given by;	
	(a) Vant – Hoff equation	(b)	Le – Chatlier's	principle	
	(c) Arrhenius equation	(d)	None of the ab	ove	
18. In	steam table, different data of	steam can be	e arranged acco	rding to,	
	(a) Saturated steam data with	th reference t	o varying tempe	eratures	
	(b) Saturated steam data with	th reference t	o varying press	ure	
	(c) Super heated steam data	for different	states of tempe	ratures and diffe	erent pressure
	(d) All the above				
19. Fug	gacity is most helpful in				
	(a) Representing actual beha	aviour of real	gasses	· ambiam wold :	
	(b) Representing actual beha	aviour of idea	al gasses		
	(c) Study of chemical equili	bria involvii	ng gases at atmo	spheric pressur	e
	(d) None of the above				
20. Epo	oxy is an example for				
	(a) Thermoset (b) Elas				
21. Isot	hermal irreversible expansion				
(a)	Non spontaneous process		(b) Spontaneou	us process	
(c)	Steady process		(d) Continuou	s process	
22. Hea	at is transferred by conduction	on, convection	n and radiation	i geivolloi edi l in,	
((a) Boiler furnaces		(b) Melting	of ice	
(c) Condensation of steam in	condenser	(d) None of	the above	

16. Third law of thermodynamics is helpful in

23. W	ith increase in tempe	rature thermal	conductivity	of solid me	etals	
	(c) Remain constant		(d) Deper	d on other		
						n A fol
24. M	lass transfer co-efficie	ent (K) and di	ffusivity (D) a			
	(a) K α D	(b) 1	Kα√D	(c) K	x D ^{1.5}	$(d) K \alpha D^2$
25. In	steam distillation, the					
	(a) Temperature	is 100°C				
	(b) Temperature	is more than	100°C		กับอุซ ชนใยรถ่	
	(c) Product must	be immiscibl	e with water			
	(d) Temperature	is higher than	boiling point	of either co	omponent	
26. W	arpage of polymer pr					
	(a) Long cycle ti	me				
	(b) Uneven surfa	ice temperatur	re of molds			
	(c) Too slow inje	ection speed				
	(d) Excessive mo	oisture in the i	resin			
27. In	stretch blow molding	the part which	n is used to he	eat and stret	ch is called	as;
	(a) Pre preg	(b) Parison	(c) Perform	n (d) Nor	ne of the ab	ove
28. SN	MC, DMC, BMC etc.,	are the comp	ounds used fo	r:		
	(a) Injection mo	olding	(b) Calend	ering		
	(c) Blow molding	ng	(d) Compr	ession mole	ling	
29. Wh	ich processing metho	d is; simple o	perative, low	cost and les	s wastage?	
	(a) Compression	molding	(b) Injecti	on molding		
	(c) Roto moldin	g	(d) Thermo	oforming		
80. Wh	ich of the following r	nolecule unde	rgoes ring op	ening polyn	nerization?	D. Hent is an
	oveda sali	NH NH		H H	0—О—ОН	
	(a)	(b)	(c)		(d)	
			AE-PL4			

31. Rubbers are usually useful only after	
(a) Cooling (b) Thermal Ageing	(c) Vulcanization (d) Decrosslinking
32. The plastic compound is made by mixing f	functional additives with the plastic using,
(a) Two roll mill	(b) Compression moulding machine
(c) Twin screw Extruder	(d) Thermoforming machine
33. For a free radical polymerization the polym	mer formation is proportional to the,
 (a) Square root of the monomer concert (b) First power of the monomer concert (c) nth power of the monomer concentration (d) First power of initiator concentration 	ntration attion
34. Polymers are	
(a) Macromolecules (c) Oligomers	(b) Micromolecules(d) Sub-macromolecules
35 is defined as the number of	monomer units consumed per active center
(a) Rate of growth(c) Kinetic chain length	(b) Rate of polymerization(d) Rate of termination
36. In a free radical polymerization of co-poly types of monomer are given by	vmer, the rate of disappearance of the two
(a) $K_{11} [M_1^o] [M_1] + K_{21} [M_2^o] [M_1]$ (c) Both (a) & (b)	(b) $K_{12} [M_1^0] [M_2] + K_{22} [M_2^0] [M_2]$ (d) None of the above
37. The degree of polymerization	
(a) Decreases with increase in temperature(c) Increases with increase in temperature	(b) Increases with decrease in temperature(d) Unaltered
38. The degree of polymerization and kinetic c	chain length are
(a) Independent(c) Inversely proportional to each other	(b) Interdependent(d) None of the above
39. In case of second order reaction the time of	f half change $(t_{1/2})$ is
(a) Independent on monomer concentration(b) Directly proportional to each other(c) Inversely proportional to monomer conc(d) None of the above	
40. Out of the following polymers, which one	shows highest melting temperature
(a) Polymethyl acrylate (PMA)(c) Polybutyl acrylate (PBA)	(b) Polyethyl acrylate (PEA) (d) Polymethyl methacrylate (PMMA)

Which of the follow	ving polymer is water s	oluble?			
(a) Polyvinyl ester		(b) Polyvinyl alcohol	(b) Polyvinyl alcohol		
(c) Polyether et	her ketone	(d) Chitosan			
The group of polyr	mers consisting of PC,	PEO, PPO, PPS, nylons and F	PEEK is best		
categorized as;					
(a) Engineering	polymers	(b) Natural polymers			
(c) Biodegradah	ble polymers	(d) Commodity polymo	(d) Commodity polymers		
AIBN on thermal d (a) CO ₂	ecomposition produces (b) NO	free radicals along with (c) N ₂	(d) NH ₃		
Monomer to prepar	e polyacrylonitrile (PA	N) is;			
(a) $CH_2=CH_2$	(b) CH ₂ =CHCN	(c) CFCl=CF ₂	(d) $CF_2 = CF_2$		
In polycondensatio	n to prepare polyamide	e, the reaction takes place bety	ween		
(a) Diacids and	Diols	(b) Diisocyanates and p	polyols		
(c) Diacids and	Diamines	(d) Diols and diols			
The chain carrier in	n case of cationic polyn	nerization are,			
(a) Carbonium	ions (b) Hydroxy	l ions (c) Carbanions	(d) Carbonyl ions		
If the repeat units a	re joined in a 3-dimens	sional array, the resulting poly	ymer will be		
(a) Linear polyn (c) Cross linked		(b) Branched polymer(d) None of these			
Atactic polymers ar	e,				
(a) High melting ar	nd highly soluble (l	b) Low melting and easily sol	uble		
(c) High melting ar	nd less soluble (d	d) None of these			
Which of the follow	ving is a branched chai	n polymer,			
(a) HDPE	(b) LDPE	(c) UHMWPE	(d) XLPE		
	a	eltimesonos ramonem ol lend	ilmaksal alus esculio		
Addition polymeriz	ation is nothing but,				
(a) Condensation po	olymerization (t	o) Step polymerization			
(c) Chain polymeri	zation (d	d) Interfacial polymerization			

Each Question carries two marks

 $25 \times 2 = 50 \text{ marks}$

- 51. The dilute acid containing 25% H₂SO₄ is concentrated by commercial grade sulphuric acid containing 98% H₂SO₄ to obtain desired acid contain 65% H₂SO₄. Find the quantities of the acids required to make 1000 kg of desired acid,
 - (a) Dilute acid 452 kg, commercial grade 548 kg
 - (b) Dilute acid 548 kg, commercial grade 452 kg
 - (c) Dilute acid 600 kg, commercial grade 758 kg
 - (d) Dilute acid 758 kg, commercial grade 600 kg
- 52. A sample of coal is found to contain 67.2 % carbon and 22.3 % ash on weight basis. The reflux obtained at the end of combustion is analyzed to contain 7.1 % by weight carbon and the rest is ash. Calculate the percent of original carbon remaining unburnt in reflux,
 - (a) 4.002

- (b) 1.681
- (c) 6.217 (d) 2.535
- 53. If a bucket holds 4.00 lb of NaOH (mol wt 40.0). How many pound moles of NaOH does it contain?

 - (a) 0.100 lb mol NaOH (b) 1.000 lb mol NaOH
 - (c) 0.025 lb mol NaOH

(d) 0.050 lb mol NaOH

54. Match the following:

Column A

- (p) $\Delta H T \Delta S$
- (q) $1-T_2/T_1$
- (r) U+PV
- (s) $C_p C_v$

- Column B
- 1. Efficiency of a Carnot engine
- 2. Gibbs energy
- 3. Universal gas constant
- 4. Enthalpy
- (a) (p) -2; (q) -1; (r) -4; (s) -3
- (b) (p) -1; (q) -2; (r) -3; (s) -4
- (c) (p) -3; (q) -4; (r) -1; (s) -1
- (d) (p) -4; (q) -3; (r) -1; (s) -2

rom the following four groups of polymers, identify the group in which all four polymers re semi crystalline;

- (a) HDPE, NR, PP, PS, UF
- (c) Nylon 6, PP, PS, HDPE, PET
- (b) PET, PVC, epoxy, UF, PC
- (d) Nylon 66, ABS, SBR, PP, NR

latch the items given in the following two columns using appropriate combination

Column A

- P. Sodium lauryl sulphate
- Q. Benzoyl peroxide
- R. Ti $Cl_4 + Al(C_2H_5)_3$)
- S. Polyvinyl alcohol
- (a) P-1; Q-3; R-4; S-2
- (c) P-4; Q-3; R-2; S-1

Column B

- 1. Initiator
- 2. Suspending agent
- 3. Emulsifier
- 4. Zeigler- Natta catalyst
- (b) P-1; Q-2; R-3; S-4
- (d) P-3; O-1; R-4; S-2

Match the following additives for plastics with their respective functions

Additives

- P. Dioctyl phthalate.
- Q. Sodium bicarbonate
- R. Aluminium tri hydrate (ATH)
 - S. Silica

Functions

- 1. Blowing Agent
- 2. Flame retardant
- 3. Filler
- 4. Plasticizer

What are the molecular weights of polyethylene (PE) and polypropylene (PP), when their D_p is 1000?

- (a) 28000 & 410000
- (c) 30000 & 42000

- (b) 20000 & 40000
- (d) 28000 & 42000

A small molecule is eliminated as a byproduct during the synthesis of;

- (a) Acrylonitrile-butadiene-styrene copolymer
- (b) Polycaprolactone

(c) Polyvinylidene chloride

(d) Poly (ethylene terephthalate)

Γoughens of a plastic material can be judged from the area under the stress- strain curve obtained from tensile test. The plastic having the highest toughness exhibits,

- (a) High tensile strength and low elongation
- (b) Low tensile strength and high elongation
- (c) High tensile strength and high elongation
- (d) Low tensile strength and low elongation

61. Functionality of acetyl	lene and diisocyanate	are;		
(a) 2 & 4	(b) 2 & 2	(c) 4 & 4	(d) 4 & 2	
62. T _g of PMMA and NR	are;		P1.0 (8)	
(a) 80 and -55°C	(b) 80 and 55°C	(c) - 80 and - 55	°C (d) 80 and -5°C	
composite in the units of	e and that of the natural of g/cc is;	ral rubber is 0.8 g/cc.	The density of the rubber	
(a) 1.688	(b) 1.280	(c) 2.400	(d) 1.400	
64. The advantages of emu	lsion polymerization	process are;		
 (ii) High purity production (iii) Temperature and visition (iv) Pearl or bead type (a) (i) & (ii) 65. Match the items given in Column A P. PP, HDPE, L 	iscosity can be control product (b) (i) & (iii) In the following two control DPE ylene, ethylene, acryle	(c) (i) & (iv) olumns using appropri Column B 1. Elastom	(d) (ii) & (iii) ate combination ers sets	
S. NBR, NR, SB	BR, EPDM	4. Monom	ers	
(a) P-1; Q-2; R-3; S-4 (c) P-4; Q-3; R-2; S-1		(b) P-1; Q-2; R-3; S-4 (d) P-3; Q-4; R-2; S-1		
66. Co-ordination polymeric	zation is also known a	as		
(i) Insertion polyme	erization	(ii) Polycondensation polymerization		
(iii) Interfacial polyn	nerization	(iv) Stereo specific	polymerization	
(a) (i) & (ii)	(b) (ii) & (iv)	(c) (i) & (iv)	(d) (iii) & (iv)	
67. How many gram moles	of sodium hydroxide	are present in 1 kg of s	sodium hydroxide?	
(a) 40.00	(b) 25.00	(c) 50.50	(d) 18.00	

3. A gaseous mixture co	ontains 16 kg of oxygen	, 1 kg of hydrogen ai	nd 14 kg of nitrogen. The	
mole fraction of nitro	gen is,			
(a) 0.14	(b) 1.6	(c) 0.33	(d) 0.31	
9. BF ₃ , AlCl ₃ , SnCl ₄ and	d TiCl4 are the example	s for,		
	eationic polymerization	(b) Inhib	itor	
(c) Initiators for f	ree radical polymerizati	on (d) Chair	n transferring agents	
)ABBBABAABABI	BABBABAAB- repres	ents		
(a) Block copolyr	mer (b) Randon	n copolymer		
(c) IPNs	(d) Alterna	te copolymer		
1. The density of nylon	66 is 1220 kg/m³, its va	lue in g/lt, will be ed	qual to	
(a) 0.1220	(b) 1.220	(c) 1220	(d) 12.20	
2. How much nitrogen of	can be obtained from 85	kg of ammonia?		
(a) 14 kg	(b) 28 kg	(c) 85 kg	(d) 70 kg	
3. Avogadro's number i	is equal to			
(a) $6.023 \times 10^{26} \text{ n}$	nolecules/g.mole	(b) 6.023×10^{26} molecules/kg.mole		
(c) $6.023 \times 10^{20} \text{ n}$	nolecules/g.mole	(d) 6.023×10^{13} molecules/g.mole		
			* P. Epovy Pr. 196 S. NER, NE. SER	
4. Living polymers are	E G A A LUZZA			
(a) Coordination polymerization		(b) Anionic polymerization		
(c) Condensation po		(d) Free radical j		
The starting material	to prepare polyethylene	terenhthalate is		
and the beautiful	cid + Ethylene glycol		acid + Butane-diol	
(c) Maleic acid +		(b) Terephthalic acid + Butane-diol(d) Terephthalic acid + Adipic acid		