

	-					
1.	For the linear model, $y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$, $i = 1, 2, \ldots, m, j = 1, 2, \ldots, n$, which of the following assumptions is not true? (A) The experimental data are homogeneous (B) The errors e_{ij} 's are i.i.d.					
	(C) The common dis(D) The effects are a		(0, σ _e	(3)		
2.	Which of the following (A) Critical difference			nalysis of variance ' Duncan's test	?	
	(C) Tukey's test		(D)	χ^2 - test		
3.	To test the equality of used? (A) χ^2 - test	ftreatment means in	(B)	t-test		ving test is
	(C) F-test		` ,	standard normal		
4.	Which of the followin (A) randomization or (C) local control and	nly	(B)	ntal design is/are u replication only randomization ar		
5.	In CRD with t treatmed (A) $n-1$	ents based on n exp (B) t – 1				f. is n – t + 1
6.	The error sum of squa(A) more	ares in RBD as comp (B) less		to CRD using the s equal		material is unequal
7.	Confounding is a technology (A) block size	hnique to reduce (B) replication	(C)	errors	(D)	error d.f.
8.	The number of LSD' orthogonal to each o	ther is				-
	(A) m	(B) atmost m – 1	(C)	atmost m	(D)	m – 1
9.	Suppose a BIBD wit following cases is no (A) $v_i r = bk$			λ is available. Th	en wl	hich of the

- 10. Let there be 5 units in the population, numbered from 1 to 5. If a simple random sample of size 3 without replacement is drawn from the population, what is the probability that unit 5 is included in the sample?
 - (A) $\frac{1}{5}$

(C) $\lambda(v-1) = r(k-1)$

- (B) $\frac{3}{5}$
- (C) $\frac{2}{5}$

(D) $b \ge v$

(D) $\frac{1}{3}$

- 11. Which variety of an incomplete block design has the following relationship: b = v + r - 1 between their parameters?
 - (A) Symmetrical BIBD

- (B) Resolvable BIBD
- (C) Affine resolvable BIBD
- (D) PBIBD
- 12. Consider the following statements:
 - 1) Non sampling errors occur in complete enumeration only.
 - Increase in the sample size usually results in the decrease in sampling error.
 - 3) In a sample survey, non sampling errors may also arise due to the defective

Which of the above statements are true?

- (A) 1 and 2
- (B) 1 and 3
- (C) 2 and 3
- (D) 1, 2 and 3
- 13. In estimating population mean based on a stratified sample with maximum precision for a fixed cost, take a large sample from a stratum if
 - (A) the stratum is larger
 - (B) sampling is cheaper in the stratum
 - (C) the stratum is more variable internally
 - (D) conditions in either (A), (B) and (C) or all simultaneously hold
- 14. Which of the following cases of systematic sampling with interval k, systematic sample mean is not an unbiased estimator of the population mean?
 - (A) linear sampling with N = nk
- (B) linear sampling with N ≠ nk
- (C) circular sampling with N = nk (D) circular sampling with $N \neq nk$
- 15. In SRSWOR of n clusters each containing M elements from a population of N clusters, variance of the estimator of the population mean depends on
 - (A) n and M

- (B) population mean square, S²
- (C) intraclass correlation coefficient, ρ_c (D) n, M, S² and ρ_c
- 16. In which of the sampling schemes/estimation methods, information on the auxiliary variate which is highly correlated with the study variate cannot be used?
 - (A) Ratio and regression methods
- (B) PPS sampling

(C) Stratified sampling

- (D) Systematic sampling
- 17. Let $X \sim P(\lambda)$. Then an unbiased estimator of $e^{-\lambda}$ based on a single observation X, is given by
 - (A) $\delta(X_1) = \begin{cases} 1, & \text{if } X_1 = 0 \\ 0, & \text{otherwise} \end{cases}$
- (B) $\delta^*(X_1) = \begin{cases} 1, & \text{if } X_1 \ge 1 \\ 0, & \text{otherwise} \end{cases}$

(C) X,

(D) e-x

230			
18.	Let X_1, X_2, \dots, X_n be a random sample of size r	from N(μ , σ^2). Let S ²	$=\sum_{i=1}^{n}\frac{(X_{i}-X)^{2}}{n-1}$
	Consider the following statements:		i=1 '''
	1) S^2 is unbiased for σ^2 , but S is not unbi	ased for σ .	
	 S² is consistent for σ², but S is not co Which of these statements is/are true 	?	
	1 _ 1	B) 2 only D) none of the above	•
19.	: = :	ne unique UMVUE of a B) Rao-Blackwell D) Cramer's	a parameter ?
20.	• •	B) Normal with one pa	arameter known
	,	D) Uniform over (0, θ	•
21.	 An unbiased estimator which attains the Cr (A) Consistent estimator ((C) Asymptotically efficient estimator (B) MVB estimator	d is known as
22.	Which of the following is not true? (A) ML estimator is the MVB estimator, if (B) If a unique ML estimator exists, it is a (C) If UMVUE of θ exists then it is same a (D) ML estimator need not be unbiased	function of a sufficien	t statistic
23.	 Which one among the following distribution statistic ? (A) Uniform distribution over (-θ, θ) (B) Normal distribution with mean θ (C) Poisson distribution with parameter θ (D) Cauchy distribution with location parameter 		ngle sufficient
24.	Let T_1 and T_2 be two unbiased estimators fo efficiency of T_2 w.r.t. T_1 , then the correlation (A) $e^{-1/2}$ (B) $e^{1/2}$	n coefficient between 7	
25.	 5. Consider the following statements regarding 1) Estimators obtained by the method of 2) Estimators obtained by the method of Which of these is/are true? 	ng moment estimators moments are unbiase	d.
	(A) 1 only (B) 2 only ((C) both	(D) none

26. Fisher-Neymann criterion for sufficiency is used

- (A) to show that a given statistic is sufficient or not
- (B) to show that a given statistic is complete sufficient
- (C) to answer the question of whether a family admits a best estimator for the parameter
- (D) to answer whether a given estimator is admissible
- 27. For the SPRT of strength (α, β) , which of the following inequalities is satisfied by the stopping bounds A and B (A > B)?

(A)
$$A \ge \frac{1-\beta}{\alpha}$$
, $B \le \frac{\beta}{1-\alpha}$

(B)
$$A \le \frac{1-\beta}{\alpha}$$
, $B \ge \frac{\beta}{1-\alpha}$

(C)
$$A \ge \frac{1-\alpha}{\beta}$$
, $B \le \frac{\alpha}{1-\beta}$

(D)
$$A \le \frac{1-\alpha}{\beta}$$
, $B \ge \frac{\alpha}{1-\beta}$

- 28. The mean of 9 observations drawn at random from a normal population with mean μ and standard deviation 9 is 18. What is the shortest 95% confidence interval for μ ?
 - (A) (9, 27)
- (B) (15, 21)
- (C) (13.05, 22.95)
- (D) (12.12, 23.88)

12931

- 29. Which of the following is correct for taking a decision of rejecting/accepting a null hypothesis H_o using the P-value?
 - (A) Smaller the P-value, weaker evidence against H₀
 - (B) Smaller the P-value, stronger evidence against H
 - (C) Smaller the P-value, weaker evidence in favour of H₀
 - (D) Smaller the P-value, stronger evidence in favour of H
- 30. To test H_0 : $\lambda = 1$ Vs. H_1 : $\lambda = 2$ based on a single observation from $P(\lambda)$, the

test function is given by $\phi(x) = \begin{cases} 1, & \text{if } x > 2 \\ 0, & \text{otherwise} \end{cases}$. Then power of the test is

(A)
$$1 - \frac{5}{e^2}$$
 (B) $\frac{5}{e^2}$ (C) $1 - \frac{5}{2e}$

(B)
$$\frac{5}{e^2}$$

(C)
$$1-\frac{5}{2e}$$

- 31. For a population distribution, Kolmogorov-Smirnouv one sample test is used for testing its
 - (A) location

- (B) symmetry
- (C) location and symmetry
- (D) goodness of fit
- 32. For the sample values, X_i: 1, 2, 3, 5, 7, 9, 11, 18 and Y_i: 4, 6, 8, 10, 12, 13, 15, 19, the value of the Mann-Whitney U-statistic for testing $H_{\rm o}$: The populations are identically the same is
 - (A) 54
- (B) 51
- (C) 47
- (D) 17

1293	1			
33.	If X~ binomial (50, 0) (A) symmetric (B) + vely skewed (C) - vely skewed (D) cannot say any	·		ribution
34.	Binomial distribution mean λ if (A) $n \to \infty$ · (B) $p \to 0$ (C) $np = \lambda$ (D) conditions in (A)			oisson distribution with .
35.	The β_1 -coefficient of	of Poisson distribut	ion with mean e is	3
	(A) e	(B) √e	(C) $\frac{1}{e}$	(D) $\frac{1}{\sqrt{e}}$
36.	If X has Poisson with X, Y are independe (A) binomial with va (B) binomial with va (C) negative binom (D) negative binom	nt, then the conditi alues of the param alues of the param iial with values of tl	onal distribution o eters, 10 and 0.45 eters, 10 and 0.55 ne parameters, 10	i iand 0.45
37.	Which of the following (A) beta	ing distributions ha (B) exponential	as lack of memory (C) gamma	property? (D) Cauchy
38.	•		•	es having exactly three lies having all children
	(A) 225	(B) 150	(C) 75	(D) 300
39.	Suppose X has the distribution of Y is	standard Cauchy	distribution. Let	$Y = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} X$. Then
	(A) standard Cauch	•	(B) standard	normal
	(C) uniform over (C	J, I)	(D) gamma	

41. Distribution of the ratio of two independent standard normal variates is

(A) Laplace

(A) 9

(B) Lognormal

(B) 4

(C) Exponential

(C) 3

(D) Cauchy

(D) 2

40. If 4th central moment of a normal distribution is given as 12, what is its variance?

12931

42. Let X₁, X₂, X₃ be three independent standard normal variates. Then distribution

of the statistic
$$\frac{\sqrt{2}X_3}{\sqrt{X_1^2 + X_2^2}}$$
 is

- (A) Student's t with $\sqrt{2}$ d.f.
- (B) Student's t with 2 d.f.
- (C) Normal distribution with mean $\sqrt{2}$ and variance 3
- (D) Normal distribution with mean 2 and variance 3

43. Which of the following relations among measures of central tendency of the lognormal distribution holds?

- (A) Mean < Median < Mode
- (B) Mean > Median > Mode
- (C) Median < Mean < Mode
- (D) Median > Mean > Mode

44. Let X and Y be two iid random variables with absolutely continuous cdf F(.) and pdf f(.). Then the pdf g(u) of U = max(X, Y), for $u \in R$, is

- (B) 2[1 F(u)]f(u) (C) F(u) f(u)
- (D) [1 F(u)]f(u)

45. If X_1 , X_2 , X_3 , X_4 , X_5 is a random sample from uniform (0, 1) distribution, then distribution of the sample median is

- (A) Beta distribution of the first kind
- (B) Gamma distribution
- (C) Beta distribution of the second kind (D) Cauchy distribution

46. If $X_1, X_2, ..., X_n$ is a random sample from a population with cdf F(x) and pdf f(x), then the conditional distribution of $X_{r,n}$ given $X_{s,n} = y$, where $1 \le r < s \le n$, is the same as the unconditional distribution of

- (A) (s-r)th order statistic in a sample of size (n-r) from the cdf F(x) truncated left at y
- (B) (s-r)th order statistic in a sample of size (n-r) from the cdf F(x) truncated right at v
- (C) rth order statistic in a sample of size (s-1) from the cdf F(x) truncated left at y
- (D) rth order statistic in a sample of size (s 1) from the cdf F(x) truncated right at y

47. Let (X, Y) have a bivariate normal with parameters $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$. Then variance of the conditional distribution of X given Y = y is

- (A) $\rho^2 \sigma_2^2$
- (B) $(1-\rho^2) \sigma_2^2$ (C) $(1-\rho^2) \sigma_1^2$
- (D) $\rho^2 \sigma_1^2$

48. The values of the total correlation coefficients and the multiple correlation coefficient of a trivariate distribution are 0.86, 0.77, 0.72, 0.52. Among these, value of the multiple correlation coefficient is

- (A) 0.86
- (B) 0.52
- (D) 0.77

- 49. If P(A) = 0.9 and P(B) = 0.8, then the minimum value of $P(A \cap B)$ is
 - (A) 0.9
- (B) 0.8
- (C) 0.7
- 50. What is the probability that atleast two of n persons in a room have the same birthday (ignoring the possibility of 29 February)?
 - (A) $1 \frac{364 \times 363 \times ... \times (365 n + 1)}{(365)^{n-1}}$
 - (B) $\frac{364 \times 363 \times ... \times (365 n + 1)}{(365)^{n-1}}$
 - (C) $1 \frac{364 \times 363 \times ... \times (365 n 1)}{(365)^{n-1}}$ (D) $\frac{364 \times 363 \times ... \times (365 n 1)}{(365)^{n-1}}$
- 51. If A and B are events such that P(A) = 0 = P(B), then $P(A \cap B)$ equals
 - (A) 0 only when $A = \phi$

- (B) 0 only when $B = \phi$
- (C) 0 only when A and B are independent
- (D) 0
- 52. If X and Y are two random variables with the following bivariate distribution:

X	Val	lues of	Y	Total		
	1	2	3	Probability		
Values of X						
0	0.10	0.20	0.25	0.55		
1	0.10	0.15	0.20	0.45		
Total Probability	0.20	0.35	0.45	1.00		

Consider the following statements:

- 1) X and Y are uncorrelated
- 2) X and Y are independent
- 3) X and Y are not independent

Now state which of the above statement(s) is/are correct.

- (A) 1 only
- (B) 2 only
- (C) Both 1 and 2
- (D) 3 only
- 53. If A and B are independent events with P(A) = 0.3, P(B) = 0.4, then probability that 'A' occurs but B does not' is
 - (A) 0.18
- (B) 0.28
- (C) 0.82
- (D) 0.72
- 54. A problem in Statistics is given to three students whose respective probabilities of solving it are 1/2, 1/3, 1/4. Then probability that the problem is solved equals
 - (A) $\frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{3}{4}$
- (D) 1

55. For the bivariate distribution defined in question no. 52 the conditional distribution of Y given X = 1 is given by

(A)	Values	1	2	3
	Probability	10/45	15/45	20/45

(B)	Values	1	2	3
	Probability	10/55	20/55	25/55

(C)	Values	1	2	3
	Probability	0.20	0.35	0.45

(D) None of (A), (B) and (C)

56. Bayes' theorem is used for determining

(A) likelihoods

- (B) prior probabilities
- (C) posterior probabilities
- (D) unconditional probabilities

57. If X is a non-negative integer valued random variable, then its expected value can be expressed as

(A)
$$\sum_{n=0}^{\infty} P(X \ge n)$$

(B)
$$\sum_{n=0}^{\infty} P(X > n)$$

(C)
$$\sum_{n=0}^{\infty} P(X \le n)$$

(D)
$$\sum_{n=0}^{\infty} P(X < n)$$

58. Let $\phi(t)$ be a characteristic function and consider the following statements.

- 1) $|\phi(t)|^2$ is a characteristic function.
- 2) Real part of $\phi(t)$ is a characteristic function.

Which of the above statements is/are true?

- (A) 1 only
- (B) 2 only
- (C) both
- (D) none

59. Let X_n , $n \ge 1$ and X be random variables defined on the same probability space. Which of the following relations among various types of convergence is/are true?

(A)
$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

(B)
$$X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{P} X$$

(C)
$$X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X$$

(D) Relations in (A), (B) and (C)

- 60. Which of the following types of convergence is dealt by the strong law of large numbers?
 - (A) convergence in probability
- (B) almost sure convergence
- (C) convergence in mean
- (D) convergence in distribution
- 61. Name the version of the CLT given below:

If $\{X_n\}$ is a sequence of iid random variables with $E(X_1) = \mu$ and $V(X_1) = \sigma^2$, a

finite constant and if $S_n = \sum_{k=1}^n X_k$, $n \ge 1$, then $\frac{S_n - n\mu}{\sqrt{n\sigma}} \xrightarrow{d} Z$,

where Z ~ N (0, 1)

(A) Demoivre Laplace

(B) Lindberg - Levy

(C) Lindberg-Feller

- (D) Liapunouv
- 62. Let $\{A_n\}$ be a sequence of sets. Then limit superior of the sequence is defined by
 - (A) $\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} A_k$

(B) $\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$

(C) $\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$

- (D) $\bigcup_{n=1}^{\infty} \bigcap_{k=1}^{\infty} A_k$
- 63. Consider the following statements:
 - 1) Every σ -field is a monotone class.
 - 2) Any monotone class, which is a field, is a σ -field.

Which of the above statements is/are true?

- (A) 1 only
- (B) 2 only
- (C) both 1 and 2
- (D) none
- 64. Let {f_n} be a sequence of measurable functions which is bounded below by an integrable function. Then which of the following inequalities holds good?

 - $\text{(A)} \quad \int_{n \to \infty}^{\text{lim}} \inf \ f_n d\mu \leq \lim_{n \to \infty} \inf \int f_n \ d\mu \qquad \qquad \text{(B)} \quad \int_{n \to \infty}^{\text{lim}} \sup f_n d\mu \geq \lim_{n \to \infty} \sup \int f_n d\mu$
 - $(C) \quad \int_{n \to \infty} \limsup \ f_n d\mu \leq \lim_{n \to \infty} \sup \int f_n d\mu \qquad \qquad (D) \quad \int_{n \to \infty} \liminf \ f_n d\mu \geq \lim_{n \to \infty} \inf \int f_n d\mu$
- 65. Which of the following sequences does not converge to zero?
- (A) $\left\{ \frac{1}{n} \right\}$ (B) $\left\{ \frac{1}{n^2} \right\}$ (C) $\left\{ \frac{1}{3^n} \right\}$
- (D) $\{3^n\}$

- 66. The value of $\lim_{n\to\infty} (1+1/n)^n$ is
 - (A) 1

- (B) e
- $(C) \frac{1}{R}$

(D) 0

- 67. The necessary and sufficient condition for convergence of a series $\sum a_n$ of positive real numbers is
 - (A) $\lim_{n\to\infty} a_n = 0$
 - (B) the sequence {S_n} of its partial sums is bounded above
 - (C) the sequence $\{S_n^{(i)}\}$ of its partial sums is bounded below
 - (D) $\lim_{n \to \infty} a_n^{1/n} = 0$
- 68. At x = 0 the function, $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$ is/has
 - (A) left continuous

(B) right continuous

(C) continuous

- (D) discontinuity of the second kind
- 69. Which of the following vectors are linearly independent?

- (A) $U_1 = (1, 2), V_1 = (3, -5)$ (B) $U_2 = (1, -3), V_2 = (-2, 6)$ (C) $U_3 = (2, 4, -8), V_3 = (3, 6, -12)$ (B) $U_4 = (1/2, -3/2), V_4 = (1, -3)$
- 70. If U and W are finite dimensional subspaces of a vector space and dim (S) denotes the dimension of the space S, then dim (U + W) equals
 - (A) dim (U) + dim (W) + dim (U \cap W)
- (B) $\dim(U) + \dim(W) \dim(U \cap W)$

(C) dim (U) + dim (W)

- (D) $\dim(U) \dim(W)$
- 71. Let $A = \begin{bmatrix} 2 & 0 \\ 3 & 5 \end{bmatrix}$. If A is expressed as P + Q, where P and Q are respectively symmetric and skew-symmetric matrices, then P is given by

- (A) $\begin{bmatrix} 5 & 3/2 \\ 3/2 & 1 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 5/2 \\ 5/2 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & -3/2 \\ 3/2 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 3/2 \\ 3/2 & 5 \end{bmatrix}$
- 72. Which of the following matrices is positive definite?

 - (A) $\begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}$ (B) $\begin{bmatrix} 8 & -3 \\ -3 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

- 73. The eigen values of the matrix $\begin{bmatrix} 3 & -4 \\ 2 & -6 \end{bmatrix}$ are
 - (A) 2, -5
- (B) -2, 5
- (C) 1, -5/2
- (D) -1, 5/2

74. The characteristic polynomial of the matrix, $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & 3 & 9 \end{bmatrix}$ is given by

 $t^3 - kt^2 + 31t - 17$. Then the value of k is

- (A) -13
- (B) 13
- (C) -17
- (D) 17
- 75. Let A and B be square matrices of order n, Then the minimum value of rank (AB) is given by
 - (A) rank (A) \times rank (B)

- (B) rank (A) + rank (B)
- (C) rank(A) + rank(B) n
- (D) rank(A) + rank(B) + n
- 76. The algebraic multiplicity of the eigen value 2 of the matrix $\begin{vmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{vmatrix}$ is given

to be 2. Which of the following numbers is the geometric multiplicity of 2?

- (A) 4
- (B) 3
- (C) 1

- (D) 5
- 77. Let z, z, and z, be any three complex numbers. Which of the following inequalities is not true?
 - (A) $-|z| \le \text{Re } z \le |z|$

(B) $-|z| \leq \text{Im } z \leq |z|$

(C) $|z_1 - z_2| \le |z_1| + |z_2|$

- (D) $|z_1 + z_2| \le |z_1| + |z_2|$
- 78. If a is a simple pole for $f(z) = \frac{g(z)}{z-a}$ where g(z) is analytic at a and $g(a) \neq 0$, then residue of f(z) at a is given by
 - (A) g (a)
- (B) $\frac{1}{g(a)}$
- (C) g'(a)
- (D) $\frac{1}{g'(a)}$

- 79. Order of the pole at z = 0 of the function $\frac{e^z}{z^3}$ is
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- 80. The value of $\int_{c} \frac{e^{z} dz}{(z+2)(z-1)}$, where C is the circle |z-1|=1, equals
- (B) $\frac{3i}{2\pi e}$ (C) $\frac{2\pi i}{3}$