- 1. If $r \neq 0$, $\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right)$ is equal to A) $2/r^3$. B) $-2/r^3$. C) 0 D) $-3/(2r^3)$.
- 2. The coordinates of the three vertices of a triangle are (0,0,0), (1,1,0)and (-2,1,0), then the area of the triangle is

A)
$$\frac{3}{2}$$
 B) $\frac{1}{2}$ C) 1 D) 3

3.
$$\nabla \cdot (\vec{A} \times \vec{B})$$
 is equal to
A) $\vec{B} \cdot (\vec{\nabla} \times \vec{A}) + \vec{A} \cdot (\vec{\nabla} \times \vec{B})$.
B) $-\vec{B} \cdot (\vec{\nabla} \times \vec{A}) - \vec{A} \cdot (\vec{\nabla} \times \vec{B})$.
C) $-\vec{B} \cdot (\vec{\nabla} \times \vec{A}) + \vec{A} \cdot (\vec{\nabla} \times \vec{B})$.
D) $\vec{B} \cdot (\vec{\nabla} \times \vec{A}) - \vec{A} \cdot (\vec{\nabla} \times \vec{B})$.

4. The trace of a 2 × 2 hermitian matrix A is $\pi/2$, then the determinant of the matrix $\exp(iA)$ is

A)
$$-i$$
. B) i . C) 1 D) -1

5. The eigenvalues of the matrix $A = \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$ are A) 0 and 2. B) 0 and -2. C) 0 and 1. D) 0 and -1.

6. If ϵ_{ijkl} denotes the Levi-Civita symbol in four dimensions, the value of $\epsilon_{ijkl}\epsilon_{ijkl}$ is

8. The Fourier series for the function $f(x) = x^2$, for $-\pi < x < +\pi$ is given by

$$f(x) = \frac{\pi^2}{3} + 4\sum_{1}^{\infty} (-)^n \frac{\cos(nx)}{n^2}$$
, then $\sum_{1}^{\infty} \frac{1}{n^2}$ is

- A) $\pi^2/3$. B) $\pi^2/12$. C) $\pi^2/6$. D) $4\pi^2/9$.
- 9. Which of the following can possibly be the real part of an analytic function if its imaginary part is (^{y²}/₂ ^{x²}/₂ + 2xy)?
 A) x² + y² + xy. B) x² + y² + 2xy. C) x² + y² 2xy. D) x² y² + xy.
- 10. The residue of $f(z) = z^2 \sin\left(\frac{1}{z}\right)$ at z = 0 is A) $+\frac{1}{6}$ B) $-\frac{1}{6}$ C) 0 D) 1
- 11. A body of mass m moving with kinetic energy T strikes a stationary body of mass m. As a result of the collision, both stick together and moves with a common velocity. The energy loss in the collision process is

A)
$$T/4$$
. B) T . C) $T/8$. D) $T/2$.

12. If two particles with equal masses are moving with the same velocity \vec{v} , then the velocity of the of the centre of mass frame is

A)
$$2\vec{v}$$
. B) $\vec{v}/2$. C) \vec{v} . D) zero.

13. A particle is experiencing a force $\vec{F} = -ayz\hat{i} + bzx\hat{j} - cxy\hat{k}$. The work done by the force is independent of the path provided,

A)
$$a = -b = c$$
. B) $a = -b = -c$. C) $a = b = c$. D) $a = b = -c$.

- 14. The number of degrees of freedom of two particles constrained to move in a plane with fixed distance between them is
 - A) 3 B) 4 C) 2 D) 1

- 15. For a system described by the Lagrangian $L = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) mgz$, where g is a constant,
 - A) x and z are cyclic coordinates.
 - B) y and z are cyclic coordinates.
 - C) x and y are cyclic coordinates.
 - D) z is a cyclic coordinate.

16. The Lagrangian of a one dimensional system is $L = \frac{m}{2}\dot{x}^2 + q\dot{x}x - \frac{k}{2}x^2$, where k and q are constants. The corresponding Hamiltonian is

A)
$$H = \frac{(p+qx)^2}{2m} + \frac{k}{2}x^2$$
.
B) $H = \frac{(p-qx)^2}{2m} + \frac{k}{2}x^2$.
C) $H = \frac{(p-qx)^2}{2m} - \frac{k}{2}x^2$.
D) $H = \frac{(p+qx)^2}{2m} - \frac{k}{2}x^2$.

17. The Lagrangian of a three dimensional system is

$$L = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - \frac{k}{2} (x^2 + y^2)$$

where k is a constant. If \vec{P} is the linear momentum, then

A) \vec{P} is conserved.B) P_x and P_y are conserved.C) P^2 is conserved.D) P_z is conserved.

18. The Hamiltonian of a three dimensional system is $H = \frac{\left(\vec{p} - e\vec{A}(\vec{r})\right)^2}{2m}$, where *e* is a constant. The Hamilton's equations of motion for \vec{r} is

- $\begin{array}{ll} {\rm A}) \ \dot{\vec{r}} = \{ \vec{p} + e \vec{A}(\vec{r}) \} / m. \\ {\rm C}) \ \dot{\vec{r}} = \vec{p} / m. \end{array} \qquad \qquad \begin{array}{ll} {\rm B}) \ \dot{\vec{r}} = \{ \vec{p} e \vec{A}(\vec{r}) \} / m. \\ {\rm D}) \ \dot{\vec{r}} = \{ \vec{p} e \vec{A}(\vec{r}) \} / (2m). \end{array}$
- 19. The angular frequency of a particle with mass m executing a uniform circular motion under the influence of a central potential $V(r) = kr^2$ is

A)
$$\sqrt{\frac{k}{2m}}$$
. B) $\sqrt{\frac{k}{m}}$. C) $\sqrt{\frac{3k}{2m}}$. D) $\sqrt{\frac{2k}{m}}$

- 20. A traveling wave is described by $y(x,t) = y_0 \sin(10x + 100t)$, where x and t are measured in meters and seconds respectively. The phase velocity of the wave is
 - A) 10m/s. B) 0.1m/s. C) $(40\pi)m/s$. D) $(10/\pi)m/s$.

21. The wavelength λ of the second harmonic mode in an open pipe of length L is

A) $\lambda = L/2$. B) $\lambda = 2L$. C) $\lambda = L$. D) $\lambda = L/4$.

22. A particle and a frame \mathcal{K}' is moving with a speed v and V respectively along positive x-axis in a frame \mathcal{K} , then the speed of the particle in the frame \mathcal{K}' is

A)
$$(v - V)/(1 + vV/c^2)$$
.
B) $(v - V)/(1 - vV/c^2)$.
C) $(v + V)/(1 - vV/c^2)$.
D) $(v + V)/(1 + vV/c^2)$.

- 23. A frame \mathcal{K}' is moving with a speed v in the negative y-direction when viewed in a frame \mathcal{K} . If $1/\gamma^2 = 1 v^2/c^2$, an event (x, y, z, t) in \mathcal{K} is related to the event (x', y', z', t') in \mathcal{K}' as
 - A) $t = \gamma(t' vy'/c^2)$, x = x', $y = \gamma(y' vt')$ and z = z'. B) $t = \gamma(t' + vy'/c^2)$, x = x', $y = \gamma(y' - vt')$ and z = z'. C) $t = \gamma(t' - vy'/c^2)$, x = x', $y = \gamma(y' + vt')$ and z = z'. D) $t = \gamma(t' + vy'/c^2)$, x = x', $y = \gamma(y' + vt')$ and z = z'.
- 24. A particle with rest mass energy 6MeV is moving and its energy is 10MeV. The momentum of the particle is

A)
$$8 \text{MeV}/c^2$$
. B) $4 \text{MeV}/c$. C) $4 \text{MeV}/c^2$. D) $8 \text{MeV}/c$.

25. A sphere of radius R is uniformly charged with charge density ρ_0 . The magnitude of the electric field at a distance r (r < R) from the centre of the sphere is

A)
$$\frac{3\rho_0 r}{\epsilon_0}$$
. B) $\frac{4\pi\rho_0 r}{3\epsilon_0}$. C) $\frac{\rho_0 r}{3\epsilon_0}$. D) $\frac{3\rho_0 r}{4\pi\epsilon_0}$.

26. Consider a plane dielectric interface in the xy-plane, without any free surface charges, separating two media with permittivities $4\epsilon_0$ and $2\epsilon_0$. If the electric field at the interface in the region with permittivity $4\epsilon_0$ is $(2\hat{i} + 3\hat{j} + 4\hat{k})V/m$, the electric field at the interface in the other region is

A)
$$(2\hat{i} + 3\hat{j} + 2\hat{k})V/m$$
.
B) $(4\hat{i} + 6\hat{j} + 8\hat{k})V/m$.
C) $(2\hat{i} + 3\hat{j} + 8\hat{k})V/m$.
D) $(4\hat{i} + 6\hat{j} + 4\hat{k})V/m$.

27. If a surface current, $\vec{K} = K\hat{j}$, of infinite extent is flowing in the *xy*-plane, the magnetic field in the region z > 0 is

A)
$$-\mu_0 K \hat{i}/2$$
. B) $\mu_0 K \hat{i}$. C) $\mu_0 K \hat{k}$. D) $\mu_0 K \hat{i}/2$.

28. Three charges 2q, -q and -q are kept at the points (-a, 0, 0), (0, 0, 0) and (a, 0, 0) respectively. The electric dipole moment of this charge distribution is

A) $+3qa\hat{i}$. B) $-2qa\hat{i}$. C) $+2qa\hat{i}$. D) $-3qa\hat{i}$

29. The magnetic field at the point (a, 0, 0) due to a magnetic dipole of moment $\vec{m} = m\hat{i}$ kept at the origin is

A)
$$\frac{\mu_0 m}{4\pi a^3} \hat{i}$$
. B) $\frac{\mu_0 m}{2\pi a^3} \hat{i}$. C) $-\frac{\mu_0 m}{2\pi a^3} \hat{i}$. D) $-\frac{\mu_0 m}{4\pi a^3} \hat{i}$.

30. Consider two vector potentials \vec{A} and $\vec{A'}$ such that $\vec{A'} = \vec{A} + \vec{a}$ and the corresponding magnetic fields \vec{B} and $\vec{B'}$. If a_0 is a constant, which of the following choice of \vec{a} will lead to different magnetic fields?

A)
$$\vec{a} = a_0(y\hat{i} - x\hat{j}).$$

B) $\vec{a} = a_0(y\hat{i} + x\hat{j}).$
C) $\vec{a} = a_0(x\hat{i} + y\hat{j}).$
D) $\vec{a} = a_0(x\hat{i} - y\hat{j}).$

31. The electric potential $\phi(\vec{r})$ due to a charge distribution is $\phi(\vec{r}) = \frac{q}{4\pi} \frac{\exp(-kr)}{r}$. Using the relation $(\nabla^2 - k^2)\phi(\vec{r}) = -q\delta(\vec{r})$, the total charge of the corresponding charge distribution is

A)
$$q$$
 B) $-q$ C) $2q$ D) 0

32. The electric field at a given space time point of a transverse electromagnetic wave propagating in vacuum in the direction $(\hat{i} + \hat{j})/\sqrt{2}$ is $E_0(\hat{i} - \hat{j})/\sqrt{2}$, then the corresponding magnetic field is

A)
$$\vec{B} = E_0 \hat{k}/c.$$

B) $\vec{B} = -E_0 \hat{k}/c.$
C) $\vec{B} = -E_0 \hat{k}/(\sqrt{2}c).$
D) $\vec{B} = E_0 \hat{k}/(\sqrt{2}c).$

33. Consider an electromagnetic wave incident from a medium with dielectric permittivity ϵ_1 on the interface of another medium with dielectric permittivity ϵ_2 . If both media is having the same magnetic permeability, the Brewster's angle θ_B is such that

A)
$$\tan \theta_B = \epsilon_1/\epsilon_2$$
.
C) $\tan^2 \theta_B = \epsilon_2/\epsilon_1$.
B) $\tan \theta_B = \epsilon_2/\epsilon_1$.
D) $\tan^2 \theta_B = \epsilon_1/\epsilon_2$.

34. For a hollow metallic rectangular wave guide of dimensions a and b such that a > b, the lowest cutoff frequency for TE mode is

A)
$$c\pi/a$$
. B) $c\pi/(2a)$. C) $2c\pi/a$. D) $c\pi/b$.

35. Consider the propagation of TE waves along the +z-direction through a hollow metallic rectangular wave guide with boundaries at x = 0, x = a, y = 0, and y = b. If B_0 is a constant and m, $n = 0, 1, 2, 3, \ldots$, then the x and y dependence of B_z is

A)
$$B_z = B_0 \sin(m\pi x/a) \cos(n\pi y/b)$$
. B) $B_z = B_0 \cos(m\pi x/a) \cos(n\pi y/b)$.
C) $B_z = B_0 \cos(m\pi x/a) \sin(n\pi y/b)$. D) $B_z = B_0 \sin(m\pi x/a) \sin(n\pi y/b)$.

36. In the presence of a constant magnetic field, $\vec{B} = B\hat{k}$, a particle of mass m and charge q is moving in a circular path in the xy-plane. Its velocity is $v\hat{i}$, when it is at the point (0,0,0), then the centre of the circle is at

A)
$$\left(0, \frac{mv}{qB}, 0\right)$$
.
B) $\left(-\frac{mv}{qB}, 0, 0\right)$.
C) $\left(\frac{mv}{qB}, 0, 0\right)$.
D) $\left(0, -\frac{mv}{qB}, 0\right)$.

37. Which of the following set of Maxwell's equations can be used to establish the continuity equation, $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0$

A)
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \text{ and } \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$$

B) $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \text{ and } \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
C) $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \text{ and } \vec{\nabla} \cdot \vec{B} = 0$
D) $\vec{\nabla} \cdot \vec{B} = 0 \text{ and } \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$

38. The electrostatic potential corresponding to a uniform electric filed, \vec{E} is

A)
$$\vec{E} \cdot \vec{r}$$
. B) $-\vec{E} \cdot \vec{r} \cos(\theta)$. C) $-\vec{E} \cdot \vec{r}$. D) $\vec{E} \cdot \vec{r} \cos(\theta)$.

39. Consider a cylindrical resonant cavity with plane metallic end surfaces at z = 0 and z = d. If $p = 0, 1, 2, 3, \ldots$, for TM standing wave modes, which of the following is true?

A)
$$E_z = \psi(x, y) \sin(p\pi z/d)$$
.
B) $E_z = \psi(x, y) \cos(p\pi z/d)$.
B) $B_z = \psi(x, y) \cos(p\pi z/d)$.
B) $B_z = \psi(x, y) \sin(p\pi z/d)$.

- 40. For a harmonic transverse electromagnetic plane wave propagating in the direction \hat{k} the time averaged Poynting vector is
- 41. Two point charges q and -q are kept in the xy-plane at x = -a and x = +a respectively. The electric field at the point (0, y) due this charges are

A)
$$\frac{q}{2\pi\epsilon_0} \frac{a}{(a^2+y^2)^{3/2}} \hat{i}.$$

B) $\frac{q}{2\pi\epsilon_0} \frac{y}{(a^2+y^2)^{3/2}} \hat{i}.$
C) $\frac{q}{4\pi\epsilon_0} \frac{a}{(a^2+y^2)^{3/2}} \hat{i}.$
D) $\frac{q}{4\pi\epsilon_0} \frac{y}{(a^2+y^2)^{3/2}} \hat{i}.$

42. If G is the Gibbs free energy which of the following statement is true?

A)
$$dG = SdT + VdP$$
.
B) $dG = -SdT + VdP$.
C) $dG = SdT - VdP$.
D) $dG = -SdT - VdP$.

- 43. If k, Q_N and U are Boltzmann constant, partition function and internal energy respectively, then
 - A) $U = -kT^2 \frac{\partial}{\partial T} (\ln Q_N)$. B) $U = kT \frac{\partial}{\partial T} (\ln Q_N)$. C) $U = -kT \frac{\partial}{\partial T} (\ln Q_N)$. D) $U = kT^2 \frac{\partial}{\partial T} (\ln Q_N)$.
- 44. If T_F is the Fermi temperature, the energy U of an ideal Fermi gas for $T \ll T_F$ is given by
 - A) $U = 2NkT_F/3.$ C) $U = 3NkT_F/5.$ B) $U = NkT_F/5.$ D) $U = 3NkT_F/2.$
- 45. If an ideal gas with initial temperature T_i and volume V_i is adiabatically changed to a volume V_f , the final temperature T_f is

A)
$$T_f = T_i \left(\frac{V_i}{V_f}\right)^{\gamma-1}$$
.
B) $T_f = T_i \left(\frac{V_i}{V_f}\right)^{\gamma}$.
C) $T_f = T_i \left(\frac{V_f}{V_i}\right)^{\gamma-1}$.
D) $T_f = T_i \left(\frac{V_f}{V_i}\right)^{\gamma}$.

- 46. If U is the internal energy for a blackbody cavity, then
 - A) 3U = PV. B) 2U = 3PV. C) U = 3PV. D) U = PV.

47. If the ground state energy of a hydrogen like atom is E_g , the energy of a state with radial quantum number $n_r = 4$ and orbital angular quantum number l = 2 is

A)
$$E_g/9$$
. B) $E_g/16$. C) $E_g/4$. D) $E_g/25$.

- 48. If the wave function of a one dimensional quantum system is $\psi(x) = N \exp(-x^2/\sigma^2 ipx/\hbar)$, where N is the normalization constant, then the expectation value of the momentum for this state is
 - A) p. B) \hbar/σ . C) $-\hbar/\sigma$. D) -p.
- 49. If $\hat{H} = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$ is the one dimensional harmonic oscillator Hamiltonian and $\hat{a} = \sqrt{\frac{m\omega}{2\hbar}}\hat{x} + i\sqrt{\frac{1}{2m\hbar\omega}}\hat{p}$, then the commutator $[\hat{H}, \hat{a}^{\dagger}]$ is equal to A) $-\hbar\omega\hat{a}^{\dagger}$. B) $\hbar\omega\hat{a}$. C) $\hbar\omega\hat{a}^{\dagger}$. D) $-\hbar\omega\hat{a}$.
- 50. Consider two electrons with spins $\vec{s_1}$ and $\vec{s_1}$ respectively. The expectation value of $\vec{s_1} \cdot \vec{s_2}$ for the triplet (total spin one) state is equal to

A)
$$\hbar^2/4$$
. B) $3\hbar^2/2$. C) $-\hbar^2/4$. D) $3\hbar^2/4$.

51. The state of a one dimensional quantum system given as $\psi(x) = N \exp[-(x-a)^2/\sigma^2]$, where N, σ and a are constants, then the expectation value of the position operator, $\langle \hat{x} \rangle$ is

A)
$$-a$$
. B) a . C) $1/\sigma$. D) $-1/\sigma$.

- 52. The energy of a three dimensional harmonic oscillator state is $9\hbar\omega/2$, then it is
 - A) 6-fold degenerate.B) 15-fold degenerate.C) 21-fold degenerate.D) 10-fold degenerate.
- 53. For an arbitrary operator \hat{A} and its adjoint operator \hat{A}^{\dagger} ,

A)	$\langle \psi \hat{A} \phi \rangle = \langle \phi \hat{A}^{\dagger} \psi \rangle.$	B) $\langle \psi \hat{A} \phi \rangle = \langle \psi \hat{A}^{\dagger} \phi \rangle^*$.
C)	$\langle \psi \hat{A} \phi \rangle = \langle \psi \hat{A}^{\dagger} \phi \rangle.$	D) $\langle \psi \hat{A} \phi \rangle = \langle \phi \hat{A}^{\dagger} \psi \rangle^*$.

54. If $\hat{\vec{p}}$ and $\hat{\vec{L}}$ are momentum and angular momentum operators respectively, the commutator $[\hat{L}_x, \hat{p}_z]$ is equal to

A) $-i\hbar \hat{p}_y$. B) $+i\hbar \hat{p}_y$. C) $-i\hbar \hat{p}_x$. D) $+\hbar \hat{p}_x$.

55. If E_n , n = 1, 2, 3, ... denotes the discrete bound state energies of a particle in an infinitely deep one dimensional potential, then $E_{n+1} - E_n$ is given by

A) $(n+1)E_1$. B) $(2n+2)E_1$. C) $(2n+1)E_1$. D) $(4n+1)E_1$.

- 56. For a one dimensional quantum system in a potential $V(x) = k\delta(x a)$, where k and a are constants, the wavefunction $\psi(x)$ and its first derivative $\psi'(x)$ are such that
 - A) both $\psi(x)$ and $\psi'(x)$ are discontinuous at x = a.
 - B) $\psi(x)$ is continuous and $\psi'(x)$ is discontinuous at x = a.
 - C) $\psi(x)$ is discontinuous and $\psi'(x)$ is continuous at x = a.
 - D) both $\psi(x)$ and $\psi'(x)$ are continuous at x = a.
- 57. The total angular momentum quantum number j by coupling two angular momenta with quantum numbers j_1 and j_2 are found to be j = 5/2. If $j_2 = 1$, the possible values of j_1 are

A) $7/2$ and $5/2$ only.	B) $5/2$ and $3/2$ only.
C) $7/2$, $5/2$ and $3/2$ only.	D) $1/2$ only.

- 58. If $|j,m\rangle$ and $|m_1;m_2\rangle$ denotes the basis vectors in the coupled and uncoupled representations respectively, in general a state with $j = j_1 + j_2$ and $m = j_1 + j_2 - 1$ is a linear combinations of
 - A) $|j_1; j_2 1\rangle$ and $|j_1 1; j_2\rangle$. B) $|j_1 + 1; j_2 - 2\rangle$ and $|j_1 - 2; j_2 + 1\rangle$. C) $|j_1; j_2 - 2\rangle$ and $|j_1 - 2; j_2\rangle$. D) $|j_1 - 1; j_2 - 1\rangle$ and $|j_1 - 1; j_2\rangle$.
- 59. If \hat{A}_S and $\psi_S(t)$ respectively denotes operator and state vectors in the Schrödinger picture and $\hat{U} = \hat{U}(t, t_0)$ is the time evolution operator such that $\psi_S(t) = \hat{U}(t, t_0)\psi_S(t_0)$, then the operator $\hat{A}_H(t)$ and the state vector $\psi_H(t)$ in the Heisenberg picture are
 - A) $\psi_H(t) = \hat{U}\psi_S(t)$ and $\hat{A}_H(t) = \hat{U}^{-1}\hat{A}_S\hat{U}$. B) $\psi_H(t) = \hat{U}^{-1}\psi_S(t)$ and $\hat{A}_H(t) = \hat{U}\hat{A}_S\hat{U}^{-1}$. C) $\psi_H(t) = \hat{U}\psi_S(t)$ and $\hat{A}_H(t) = \hat{U}\hat{A}_S\hat{U}^{-1}$. D) $\psi_H(t) = \hat{U}^{-1}\psi_S(t)$ and $\hat{A}_H(t) = \hat{U}^{-1}\hat{A}_S\hat{U}$.

60. An observable \hat{A} is such that $\hat{A}|a_k\rangle = a_k|a_k\rangle$ and $\langle a_j|a_k\rangle = \delta_{jk}$ For a system in the state $|\psi\rangle = |a_1\rangle + 2|a_2\rangle + 3|a_3\rangle$ the probability that a measurement of the observable represented by \hat{A} to have a value a_2 is

- 61. The Hamiltonian of a one dimensional quantum system is $H = \hat{p}^2/(2m) + m\omega^2 \hat{x}^2/2 + \lambda m\omega^2 \hat{x}$ where λ is a constant. If n = 0, 1, 2, ..., the corresponding bound state energy of the system is
 - A) $(n+1/2)\hbar\omega + m\omega^2\lambda^2/2.$ B) $(n+1/2)\hbar\omega - m\omega^2\lambda^2/2.$ C) $(n+1/2)\hbar\omega - m\omega^2\lambda^2.$ D) $(n+1/2)\hbar\omega + m\omega^2\lambda^2.$
- 62. The junction capacitance of pn junction
 - A) decrease on reverse bias.
 - B) decrease on forward bias.
 - C) is zero on reverse bias.
 - D) independent of bias.
- 63. A current amplifier is characterized by
 - A) high input impedance and low output impedance.
 - B) low impedance for both input and out put.
 - C) low input impedance and high output impedance.
 - D) high impedance for both input and out put.
- 64. The basic memory element is

A)	NOT	gate.	B)	op-amp.
C)	shift	register.	D)	flip flop.

65. the binary 10001 corresponds to decimal number

B) NOR

- A) 18 B) 17 C) 33 D) 9
- 66. The truth table given below corresponds to the operation

A	B	C
0	0	0
1	0	0
0	1	0
1	1	1

A) OR

C) AND

D) NAND

67. The ripple factor in a rectifier circuit indicates the

- A) amount of a.c voltage present in the output.
- B) amount of d.c voltage present in the output.
- C) change in d.c output when load changes.
- D) change in d.c voltage when in put a.c voltage changes.

68. The JFET is

- A) a bipolar device. B) a current controlled device.
- C) a form of op-amp. D) a unipolar device.
- 69. The purpose of offset nulling in an op-amp is to
 - A) reduce the gain.B) zero the output error voltage.C) equalize the output signal.D) increase the gain.
- 70. Solar cell work on the principle of
 - A) electron hole generation in a semiconductor by temperature rise.
 - B) photo electric effect.
 - C) electron hole generation in a pn junction by incident photons.
 - D) thermionic emission.
- 71. For an oscillator the product A_v and attenuation of the feed back β of the circuit must be
 - A) equal to 1. B) less than one. C) 10. D) 100.
- 72. For operation as an amplifier the base of a npn transistor has to be
 - A) negative with respect to the emitter.
 - B) zero bias.
 - C) positive with respect to collector.
 - D) positive with respect to the emitter.
- 73. Which of the following gates are known as universal gates?

A) AND and OR.	B) AND and NOT.
C) NAND and NOR.	D) OR and XOR.

- 74. Most commonly used material for optical fiber is
 - A) silica. B) silicon. C) alumina. D) germanium.

- 75. Sky wave propagation make use of
 - A) direct propagation of radio waves between antennas in the line of sight.
 - B) reflection of radio waves by ionized layers in the upper atmosphere.
 - C) radio waves that reflect by earth surface.
 - D) waves transmitted with help of satellites.
- 76. The process of converting the digital signal to analog is achieved by designing
 - A) a resistive divider or ladder circuit
 - B) a comparator circuit
 - C) a circuit using gates
 - D) a circuit using MOSFET
- 77. The Boolean equation $Y = AB\overline{C} + ABC$ is equivalent to

A) $Y = A\overline{C}$. B) $Y = \overline{C} + \overline{C}$. C) Y = BC. D) Y = AB.

- 78. On comparison of frequency modulated and amplitude modulated waves
 - A) FM carrier wave has long wavelength and can be used for transmission grater distance than AM waves.
 - B) it is less likely that frequency of FM wave accidentally modulated producing noise.
 - C) AM waves has less chance to be accidentally modulated by external disturbance.
 - D) AM waves can be used for only short distance communication.
- 79. If R_H is the Rydberg constant for hydrogen in cm⁻¹ the series limit for Lyman and Blamer series occur at
 - A) R_H and $R_H/4$ respectively. C) R_H and $R_H/2$ respectively. D) Both at R_H .
- 80. The spectroscopic term value for the ground state of helium atom is given by
 - A) ${}^{3}S_{1}$. B) ${}^{3}P_{3}$. C) ${}^{1}S_{0}$. D) ${}^{1}P_{1}$.

81. The number of Zeeman levels corresponding to the spectral notation ${}^{2}D_{5/2}$ is

A) 6 levels.	B) 5 levels.
C) 3 levels.	D) 2 levels.

- 82. Which of the following statement is correct? Hyperfine structure arise due to
 - A) the interaction of nuclear spin with total electronic angular momentum of electron.
 - B) the interaction between electron spin and orbital angular momentum.
 - C) the presence of isotopes.
 - D) the application of strong external magnetic field.
- 83. The doublet D_1 and D_2 lines in sodium spectrum can be explained by considering
 - A) relativistic correction.
 - B) Bohr atom model.
 - C) earths magnetic field.
 - D) l s coupling.
- 84. Which of the molecule given below show pure rotational spectra?

A) CO_2	B) H_2	C) CO	D) N_2
-----------	----------	-------	----------

- 85. The first absorption line in the rotational spectra of diatomic molecules appears at the wave number
 - A) $h/(8\pi^2 Ic)$. B) $4\pi^2 Ic/h$. C) $h/(4\pi^2 Ic)$. D) $8\pi^2 Ic/h$.
- 86. Raman shift is
 - A) independent of incident frequency but depends on scatterer.
 - B) independent of both incident frequency scatterer.
 - C) independent of scatterer but depends on incident frequency.
 - D) dependent on both incident frequency and scatterer.

- 87. The intensity of vibration-electronic spectra of molecules is governed by
 - A) Pauli's exclusion principle.
 - B) Born-Oppenheimer approximation.
 - C) Bear-Lambert law.
 - D) Frank-Condon principle.
- 88. The NMR spectrometer operating at a frequency 60MHz shows a chemical shift for a compound as 6ppm. What will be the chemical shift if measured using a NMR spectrometer operating at 360 MHz with the same applied magnetic field?
 - A) 36ppm. B) 6ppm. C) 1ppm. D) 12ppm.
- 89. Which of the following statement is **not** correct in the context of a laser?
 - A) The emitted radiation do not have precisely defined frequency.
 - B) The emitted radiation is highly coherent and intense.
 - C) Lasing action require population inversion.
 - D) More photons comes out compared to incident photon.
- 90. The electron spin resonance spectra falls in the
 - A) visible wavelength region.
 - B) infrared frequency.
 - C) Radio frequency region.
 - D) long wavelength edge of microwave region.
- 91. The nearest neighbor distance in the case of fcc structure with lattice parameter a is

A) $\sqrt{2} a/2$. B) a/2. C) $\sqrt{(\frac{a}{2})}$ D) a.

92. Miller indices of the plane parallel to zy-plane is

- 93. X-rays are diffracted from crystals because
 - A) the crystal has completely random arrangement of atoms.
 - B) of multiple reflections from different sides of the crystal.
 - C) of phonon vibrations.
 - D) the crystal has periodic arrangement of atoms.

94. The electrical conductivity σ is given by the relation

A)
$$\sigma = ne/\mu$$
. B) $\sigma = ne\mu$. C) $\sigma = n^2 e\mu$. D) $\sigma = ne$.

- 95. The lattice specific heat at low temperature varies as
 - A) T^3 . B) $1/T^3$. C) T. D) 1/T.
- 96. If E_F is the Fermi energy of sodium at 0K, then the Fermi energy at 10000K will be
 - A) $2E_F$. B) $10E_F$. C) $0.93E_F$. D) $100E_F$.
- 97. The Fermi level in a n-type semiconductor at 0K lie at
 - A) half way between donor level and conduction band.
 - B) below the donor level.
 - C) half way between acceptor and valance band.
 - D) half way between the conduction band and valance band.
- 98. The velocity of electrons corresponding to the point of inflexion on E k diagram is
 - A) decreases linearly as k increases.
 - B) zero.
 - C) maximum.
 - D) increases linearly as k increases
- 99. The majority carriers in a semiconductor is electrons if the Hall coefficient is
 - A) positive.
 - B) zero.
 - C) cannot be determined from Hall coefficient.
 - D) negative.
- 100. Cooper pairs are formed
 - A) at high temperature, where the thermal energy is sufficient to create Cooper pairs.
 - B) at very low temperature, where the thermal energy is not sufficient to disrupt the pair binding.
 - C) at a critical magnetic field strength where the superconductivity is destroyed.
 - D) at a temperature equivalent to the melting point of the material.

101. Piezoelectric effect is the
A) production of election hole pair in a semiconductor by photons
B) ejection of electron from a metal surface by the photon.

- C) production of electric charge on the surface of mechanically strained dielectric.
- D) production of electric charge on the surface by heat.
- 102. The factor responsible for spontaneous polarization in ferroelectric is
 - A) permanent electric dipoles. B) orbital motion of electrons.
 - C) magnetic dipoles. D) presence of ionized impurities.
- 103. Magnetic susceptibility of a magnetic material is given by

A)
$$\chi = H/M$$
. B) $\chi = M/H$. C) $\chi = \mu_0 H + M$. D) $\chi = \mu_0 (M + H)$.

- 104. Band gap of Si at room temperature is close toA) 1.1 eV.B) 2.1 eV.C) 0.67 eV.D) 6.0 eV.
- 105. X-rays are produced when an element of high atomic weight is bombarded by
 - A) neutrons. B) protons. C) electrons. D) α particles.
- 106. Nuclear radius R is proportional to A) $A^{2/3}$. B) $A^{1/3}$. C) $A^{3/2}$. D) A.
- 107. The average binding energy per nucleon in a nucleus isA) 7.8 eV.B) 931 MeV.C) 7.8 keV.D) 7.8 MeV.
- 108. Which one of the following particles have spin other than half?
 - A) proton B) electron C) photon D) neutrino
- 109. The deviation of the charge distribution from spherical symmetry can be estimated by measuring its
 - A) electric quadrupole moment.B) electric dipole moment.C) magnetic dipole moment.D) charge.
- 110. A deuteron in the ground state consists of
 - A) one proton and one neutron with anti parallel spins.
 - B) one proton and one neutron with parallel spins.
 - C) two protons with parallel spins.
 - D) two neutrons with parallel spins.

111. Spin and parity of ${}_5B^{11}$ nucleus can be predicted by shell model as

A)
$$\frac{3}{2}^+$$
. B) $\frac{1}{2}^-$. C) $\frac{1}{2}^+$. D) $\frac{3}{2}^-$.

- 112. Which among the following is a material used as the moderator in nuclear reactors?
 - A) aluminum B) cadmium C) carbon D) uranium
- 113. The particle neutrino was proposed by Pauli to explain
 - A) the continuous spectra of the β particles.
 - B) the γ ray emission.
 - C) the α ray emission.
 - D) the stability of magic numbered nuclei.
- 114. The contribution of Coulomb energy in the semiempirical mass formula of a nucleus $_ZX^A$ is proportional to
 - A) $Z/A^{2/3}$. C) $A/Z^{1/3}$. B) $(Z-1)/A^{1/3}$. D) $Z(Z-1)/A^{1/3}$.

115. The quark structure of the proton is

- A) udd. B) uud. C) ddd. D) uuu.
- 116. Nuclear forces are
 - A) short range and spin independent.
 - B) long range and attractive.
 - C) short range and spin dependent.
 - D) long range and repulsive.
- 117. Nuclear fusion requires high temperature because
 - A) nuclei must posses high kinetic energy to overcome the Coulomb repulsion.
 - B) all nuclear reactions absorbs heat.
 - C) nuclei must posses high kinetic energy to overcome the repulsion due nuclear interaction.
 - D) there is tensor component in the nuclear force.

118. The scintillation counter works on the principle of

- A) electron-hole pair production in the material when particle strikes on it.
- B) conversion of ultra violet light to visible light.
- C) the emission of light from certain materials when charged particle strikes on it.
- D) the carrier generation in the depletion region of a junction when a charged particle strikes on it.

119. Which of the following is a baryon?

А) pion	B)	neutron (C)) neutrino	D))	muon
---	--------	----	-----------	----	------------	---	----	------

120. The half life of radioactive element with decay constant λ is

A) $\ln 2/\lambda$.	B) $2/\lambda$.	C) $1/\lambda$.	D) $1/(2\lambda)$
----------------------	------------------	------------------	-------------------