If $z = \cos \theta + i \sin \theta$ then $\frac{z^{2n} + 1}{z^{2n} - 1}$ is 1.

- B) $-i \tan n\theta$
- C) $i \cot n\theta$
- $-i \cot n\theta$ D)

2. Let X be a set with 11 elements. The number of subsets of X containing more than 5 elements is

- 2^4 A)
- B)
- C)
- 2^{10} D)

Let a, b, c be real numbers with $a \neq 0$. Let α be a root of $a^2x^2 + bx + c = 0$ and β be a root of $a^2x^2 - bx - c = 0$ where $0 < \alpha < \beta$. Then one root γ of $a^2x^2 + 2bx + 2c = 0$ 3. satisfies the relation

- $\gamma = \frac{\beta \alpha}{2}$
- B) $\gamma = \frac{\alpha + \beta}{2}$ C) $\alpha < \beta < \gamma$ D) $\alpha < \gamma < \beta$

Which of the following is a period of the function $f(x) = \sin(\frac{2x+3}{6\pi})$ 4.

- A) 6π
- $6\pi^2$ B)
- C)

The domain of the function $f(x) = \frac{2}{9 - x^2} + \log(x^3 - x)$ is 5.

A)

- $(-3, \infty)$ $(-1, 0) U (1, 3) U (3, \infty)$ C)
- B) $(-3, 0) U (3, \infty)$ D) $(-3, 0) U (1, 3) U (3, \infty)$

6. The function $f(x) = \log_2 x$ maps the interval (4, 16) in to

> (2, 4)A) (1, 2)

(1, 4)B)

C)

D) (0, 2)

If $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ then $A^3 =$

A) I C) $3A^2 - 2A$

A(A-I)

2A (A-I) D)

The system of equations 2x + 3y = 5; 4x + ay = 0 is inconsistent for 8.

- B)
- All values of $a \neq 3$ C)
- D) All values of $a \neq 6$

9.	The v	alue of $\lim_{x\to 0} \frac{(1}{x}$	$+x)^{1/2}-$	$(1-x)^1$	/2 — is				
	A)		В)			C)	$\frac{1}{2}$	D)	∞
10.	The m	naximum value	of $y = x$	(logx)	² in the	interval	1 (0,1) is		
	A)	$4e^2$	B)	$4e^{-2}$		C)	$2e^2$	D)	$2e^{-2}$
11.	Let x	$= \log t$ and $y =$	$t^3 - 2. \ T$	Then $\frac{d^2}{dx}$	$\frac{2y}{x^2}$ at t =	= 1 is			
	A)	2	B)			C)	6	D)	9
12.	$\int x^{2x}$ (1+log x) dx is							
	A)	$2x^{2x} + c$			B)	$\frac{1}{2}x^{2x}$	+ c $\log x + c$		
	C)	$x^{2x} + x + c$			D)	$\overline{x^{2x}} + 1$	$\log x + c$		
13.	$\int_{-\infty}^{1} \frac{e^{x}}{x}$	$\frac{+1}{-1}$ dx =							
	A)	-1	B)	1		C)	e^2	D)	e^{-2}
14.	The a	rea bounded by	one arc	h of the	e curve	$y = \sin x$	4x is		
	A)	1	B)	$\frac{1}{2}$		C)	$\pi/4$	D)	$\pi/2$
15.		number of com		ngents	to the	circles	$x^2 + y^2 + 2x$	- 2y +	-1 = 0 and
	$x^2 + y$ A)	$x^2 - 2x - 2y + 1 = 1$	= 0 is B)	2		C)	3	D)	4
16.	_	lane meets the has centroid (3,				_		h that t	he triangle
	A)	3x + 4y + 5z =	= 1		B)	3x + 4	4y + 5z = 12		
	C)	$\frac{x}{3} + \frac{y}{4} + \frac{z}{5} = 1$	I		D)	$\frac{x}{3} + \frac{y}{4}$	$\frac{z}{1} + \frac{z}{5} = 3$		
17.	The e	ccentricity of th	e rectar	ngular h	yperbol	la is			
	A)	$\sqrt{2}$			B)	$\sqrt{3}$			
	C)	$\sqrt{2}/2$			D)	$\sqrt{3}/2$			
18.		entre of the sph	nere pas	sing th	rough th	ne four	points (0, 0,0),	, (a, 0, 0	0), (0, b, 0)
	and (CA)	0, 0, c) is (a, b, c)			B)	(a/2, b	o/2, c/2)		
	C)	(-a, -b, -c)					-b/2, -c/2)		

19.	The an	egle between the $\frac{x-1}{2} = \frac{y-3}{3} = \frac{y-3}{3}$		and the	plane x	x – 2y +	4z + 7 = 0 is		
	A)	0	B)	$\pi/2$		C)	$\pi/3$	D)	$\pi/4$
20.	(4, -3)	ortion of a straig) in the ratio 4: 15x - 16y = 1 15x - 16y = 3	5. The	n the eq	uation (B)	of the li 15x –		ded by t	he point
21.		equation $1 - x^2 = x$ with $0 < x < 1$ has Exactly one solution B) Exactly two solutions More than two solutions D) No solution							
22.	A)	irrational number $x + y$ can be re	ational			-	which of the factorial	Collowin	g is true?
	C)	$\frac{x}{y}$ can be ratio	onal		D)	x ^y can	be rational		
23.	Let (a	n) be the seque	ence giv	en by	$\alpha_n = \left(1\right)$	$+\frac{1}{n}$ ⁿ .	Then which	of the fo	following is
	A)	bout the limit, li $0 < \alpha < 1$ $2 < \alpha < 3$	$im \alpha_n =$	α,	B) D)	$1 < \alpha < 3 < 3$	< 2 < 4		
24.	Let X about 2	$= \left\{ x \in Q : \ge 3 \right\}$	and Y	$= \{x \in C$	$Q: x^2 \le$	3}. The	en which of th	ne follow	ving is true
	A)		o eleme	ents		is sing			
25.	A) B) C)	$f = \begin{cases} x & \text{if } 0 \le \\ 0 & \text{otherw} \end{cases}$ $f \text{ is continuou}$ $f \text{ is continuou}$ $f \text{ is continuou}$ $f \text{ is continuou}$	s at 0 and s at 1 and s	nd 1 nd diffe ifferenti	iable at	1			
26.	Let $f(x)$	$(x,y) = \begin{cases} \frac{xy}{x^2 + y} \\ 0 \text{ otherwise} \end{cases}$	$\frac{1}{2}$ if $(x, \frac{1}{2})$	y) ≠ (0,	0)				
		$\lim_{(x,y)\to(0,0)} 0,0 $					1		2

A) 0 B) 1

C) $\frac{1}{2}$

D) $\frac{2}{5}$

27.		be a continuou $f(0) = 0$. Then		alued fu	inction	on [0, 1] such that $f(x)$	x) is ratio	onal for all
	A)	0	B)			C)	$\frac{1}{2}$	D)	$\frac{1}{4}$
28.	Let f	$f(x) = \begin{cases} 1 & \text{if } 0 \le x \\ x & \text{if } 1 \le x \end{cases}$	$x \le 1$ $x \le 3$, t	then \int_0^3	$f(\mathbf{x}) d\mathbf{x}$	=			
	A)	4	B)	$4\frac{1}{2}$		C)	5	D)	$5\frac{1}{2}$
29.		$f(x) = \begin{cases} 0 & \text{if } x \text{ is} \\ 1 & \text{otherw} \end{cases}$							
	Then	Lebesgue integ	ral of f	on [0, 1] 1S				1
	A)	0	B)	1		C)	2	D)	$\frac{1}{2}$
30.	Let '	$*(A) = \begin{cases} 1 \text{ if } x \text{ id} \\ \text{other} \end{cases}$	s ration wise 0	al					_
	Then	which of the fo	llowing	is not a	n *- 1				
	A) C)	{1} set of all irrat	ionals		B) D)		all rationals all positive irra	ationals	
2.1	,				,		-		
31.		h of the followi	ng is no		•			it aisk?	
		$f(z) = \sin z$			B)	f(z) = f(z) = f(z) = f(z)	$\frac{z}{2+z}$		
	C)	$f(\mathbf{z}) = \mathbf{z} $			D)	f(z) =	e^{1+z}		
32.	Let γ($f(t) = 2e^{it} \text{ for } 0 \le$	$t \le 2\pi$.	Then th	e value	of the i	ntegral $\frac{1}{2\pi i} \int_{\gamma}^{0}$	$\frac{(3z+1)c}{z(z-1)}$	lz is
	A)	0	B)	1		C)	2	D)	3
33.	Let \sum	$\sum_{n=0}^{\infty} \alpha_n z^n$ be the	e power	series e	expansio	on of (1	$-z)^{-3}$ about the	he origin	n. Then for
	each r	α_n , α_n is equal to							
	A)	n(n+1)			B)	(n+1)	(n+2)		
	C)	$\frac{(n+1)(n+2)}{2}$			/	n^2			
34.	The ra	adius of conver	gence o	f all the	series	$\sum_{n=0}^{\infty} \frac{(4+1)^n}{5^2}$	$\frac{3i)^n}{2n}z^n$ is		
	A)	5	B)	$\frac{1}{5}$		C)	$\sqrt{5}$	D)	$\frac{1}{\sqrt{5}}$
35.	Let f	(z) be an entire	functio	n such t	that If(z	$ 0\rangle \rightarrow 0$	$as z \rightarrow \infty$ If θ	f(1) = i f	hen $f(2) =$
55.	A)	i	B)	1	ut J (Z	C)	$\frac{2}{2}$	D)	2i

36. Let γ (t) = 1 + e ^{it} for $0 \le t \le 2\pi$. Then $\int_{\gamma} e^{z} \sin z dz = A$) 0 B) 1 C) 2π D) $2\pi i$ 37. Let $f = u + iv$ be an entire function with $f(0) = 0$. Let $u(x, y) = x^2 + 2x - y^2$ for all $x + iy \in C$. Then $v(x, y) = A$) $2xy$ B) $2x(y+1)$ C) $x(y+1)$ D) $2(x+1)y$ 38. The Mobius transformation $\frac{2z-1}{2-z}$ maps the disk $U = \{z : z < 1\}$ onto A) $\frac{1}{2}U$ B) U C) $2U$ D) C 39. Which of the following Mobius transformation maps the disk $\{z : z < 1\}$ onto the upper half plane A) $\frac{z+1}{z-1}$ B) $i\frac{1+z}{1-z}$ C) $i\frac{z+z}{1-z}$ D) $i\frac{z+z}{1-z}$ 40. Let $f(z) = 1 + \sum_{n=1}^{\infty} a_n z^n$ be analytic in the disk $D = \{z : z < 1\}$. If $[f]$ is bounded by 1 in D then which of the following statements is not true A) $a_n = 0$ for $n = 1, 2,$ B) $f(\frac{1}{2}) = 1$ C) $f'(0) = 1$ D) $f''(0) = 0$ 41. Let A and B be nonempty subsets of a set X such that $(A \cup B) - (A \cap B) \subseteq A$. Then which of the following is true A) $A \subseteq B$ B) A D) $A \subseteq B$ C) $A \cap B = A$ D) $A \cap B$ C) $A \cap B = A$ D) $A \cap B$ C) $A \cap B = A$ D) $A \cap B$ C) $A \cap B = A$ D) $A \cap B$ C) C) $A \cap B$										
$x + iy \in C. \text{ Then } v(x, y) = \\ A) 2xy \qquad B) 2x(y+1) \\ C) x(y+1) \qquad D) 2(x+1)y$ 38. The Mobius transformation $\frac{2z-1}{2-z}$ maps the disk $U = \{z : z < 1\}$ onto $A) \frac{1}{2}U \qquad B) \qquad U \qquad C) 2U \qquad D) \qquad C$ 39. Which of the following Mobius transformation maps the disk $\{z : z < 1\}$ onto the upper half plane $A) \frac{z+1}{z-1} \qquad B) i\frac{1+z}{1-z} \qquad C) \frac{i+z}{i-z} \qquad D) \frac{i+z}{1-z}$ 40. Let $f(z) = 1 + \sum_{n=1}^{\infty} \alpha_n z^n$ be analytic in the disk $D = \{z : z < 1\}$. If $ f $ is bounded by 1 in D then which of the following statements is not true $A) \alpha_n = 0 \text{ for } n = 1, 2, \dots \qquad B) f(\frac{1}{2}) = 1$ $C) f'(0) = 1 \qquad D) f''(0) = 0$ 41. Let A and B be nonempty subsets of a set X such that $(A \cup B) - (A \cap B) \subseteq A$. Then which of the following is true $A) A \subseteq B \qquad B) B \subseteq A$ $C) A - B = A \qquad D) B - A = B$ 42. Which of the following is a congruence on the group $(Z, +)$ of integers. $A) \{(x, y) : x + y = 0\} \qquad B) \{(x, y) : x - y = 1\} \qquad C) \{(x, y) : x - y \text{ is even}\} \qquad D) \{(x, y) : x - y \text{ is odd}\}$ 43. The number of automorphisms of the cyclic group of Z_6 is $A) 1 B) 2 C) 3 D) 6$ 44. Let R^* be the multiplicative group all non zero reals and H be the subgroup of R^* generated by the set $\{2, 3\}$. Then which of the following is true $A) H = Q^*$, the multiplicative group of all rationals $B R^* / H \text{ is finite}$ $C) 3 + \sqrt{2} \in H$	36.								D)	2πί
 A) ¹/₂U B) U C) 2U D) C 39. Which of the following Mobius transformation maps the disk {z : z < 1} onto the upper half plane A) z+1/(z-1) B) i (1+z)/(1-z) C) i+z/(i-z) D) i (1+z)/(1-z) 40. Let f (z) = 1 + ∑_{n=1}[∞] α_nzⁿ be analytic in the disk D = {z : z < 1}. If f is bounded by 1 in D then which of the following statements is not true A) α_n = 0 for n = 1, 2, B) f(1/2) = 1 C) f'(0) = 1 D) f''(0) = 0 41. Let A and B be nonempty subsets of a set X such that (A U B) - (A ∩ B) ⊆ A. Then which of the following is true A) A ⊆ B C) A - B = A D) B - A = B 42. Which of the following is a congruence on the group (Z, +) of integers. A) {(x, y) : x + y = 0} B) {(x, y) : x - y = 1} C) {(x, y) : x - y is even} D) {(x, y) : x - y is odd} 43. The number of automorphisms of the cyclic group of Z₆ is A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R* / H is finite C) 3 + √2 ∈ H 	37.	x + iy A)	\in C. Then v (x, 2xy)		inction	B)	2x(y+1	.)	x^2+2x-	y ² for all
 A) ¹/₂U B) U C) 2U D) C 39. Which of the following Mobius transformation maps the disk {z : z < 1} onto the upper half plane A) z+1/(z-1) B) i (1+z)/(1-z) C) i+z/(i-z) D) i+z/(1-z) 40. Let f (z) = 1 + ∑_{n=1}[∞] α_nzⁿ be analytic in the disk D = {z : z < 1}. If f is bounded by 1 in D then which of the following statements is not true A) α_n = 0 for n = 1, 2, B) f(1/2) = 1 C) f'(0) = 1 D) f''(0) = 0 41. Let A and B be nonempty subsets of a set X such that (A U B) - (A ∩ B) ⊆ A. Then which of the following is true A) A ⊆ B C) A - B = A D) B - A = B 42. Which of the following is a congruence on the group (Z, +) of integers. A) {(x, y) : x + y = 0} B) {(x, y) : x - y = 1} C) {(x, y) : x - y is even} D) {(x, y) : x - y is odd} 43. The number of automorphisms of the cyclic group of Z₆ is A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R* / H is finite C) 3 + √2 ∈ H 	38.	The M	lobius transform	nation -	$\frac{2z-1}{2-z}$ m	aps the	disk U	$= \{z : z < 1\}$	onto	
upper half plane A) $\frac{z+1}{z-1}$ B) $i\frac{1+z}{1-z}$ C) $\frac{i+z}{i-z}$ D) $\frac{i+z}{1-z}$ 40. Let $f(z) = 1 + \sum_{n=1}^{\infty} \alpha_n z^n$ be analytic in the disk $D = \{z : z < 1\}$. If $ f $ is bounded by 1 in D then which of the following statements is not true A) $\alpha_n = 0$ for $n = 1, 2,$ B) $f(\frac{1}{2}) = 1$ C) $f'(0) = 1$ D) $f''(0) = 0$ 41. Let A and B be nonempty subsets of a set X such that $(A \cup B) - (A \cap B) \subseteq A$. Then which of the following is true A) $A \subseteq B$ B) $B \subseteq A$ C) $A - B = A$ D) $B - A = B$ 42. Which of the following is a congruence on the group $(\mathbf{Z}, +)$ of integers. A) $\{(x, y) : x + y = 0\}$ B) $\{(x, y) : x - y = 1\}$ C) $\{(x, y) : x - y \text{ is even}\}$ D) $\{(x, y) : x - y \text{ is odd}\}$ 43. The number of automorphisms of the cyclic group of \mathbf{Z}_6 is A) 1 B) 2 C) 3 D) 6 44. Let \mathbf{R}^* be the multiplicative group all non zero reals and H be the subgroup of \mathbf{R}^* generated by the set $\{2, 3\}$. Then which of the following is true A) $H = \mathbf{Q}^*$, the multiplicative group of all rationals B) \mathbf{R}^* / H is finite C) $3 + \sqrt{2} \in \mathbf{H}$			4							C
by 1 in D then which of the following statements is not true A) $a_n = 0$ for $n = 1, 2,$ B) $f(\frac{1}{2}) = 1$ C) $f'(0) = 1$ D) $f''(0) = 0$ 41. Let A and B be nonempty subsets of a set X such that $(A \cup B) - (A \cap B) \subseteq A$. Then which of the following is true A) $A \subseteq B$ B) $B \subseteq A$ C) $A - B = A$ D) $B - A = B$ 42. Which of the following is a congruence on the group $(\mathbf{Z}, +)$ of integers. A) $\{(x, y) : x + y = 0\}$ B) $\{(x, y) : x - y = 1\}$ C) $\{(x, y) : x - y \text{ is even}\}$ D) $\{(x, y) : x - y \text{ is odd}\}$ 43. The number of automorphisms of the cyclic group of \mathbf{Z}_6 is A) 1 B) 2 C) 3 D) 6 44. Let \mathbf{R}^* be the multiplicative group all non zero reals and H be the subgroup of \mathbf{R}^* generated by the set $\{2, 3\}$. Then which of the following is true A) $\mathbf{H} = \mathbf{Q}^*$, the multiplicative group of all rationals B) $\mathbf{R}^* / \mathbf{H}$ is finite C) $3 + \sqrt{2} \in \mathbf{H}$	39.	upper	half plane							
 C) f'(0) = 1 D) f''(0) = 0 41. Let A and B be nonempty subsets of a set X such that (A U B) – (A ∩ B) ⊆ A. Then which of the following is true A) A ⊆ B C) A – B = A D) B – A = B 42. Which of the following is a congruence on the group (Z, +) of integers. A) {(x, y) : x + y = 0} B) {(x, y) : x – y = 1} C) {(x, y) : x – y is even} D) {(x, y) : x – y is odd} 43. The number of automorphisms of the cyclic group of Z₆ is A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R* / H is finite C) 3 + √2 ∈ H 	40.	by 1 in	n D then which	of the f	ollowin	g stater	nents is	not true	. If <i>f</i> i	s bounded
 41. Let A and B be nonempty subsets of a set X such that (A U B) – (A ∩ B) ⊆ A. Then which of the following is true A) A ⊆ B B) B ⊆ A C) A – B = A D) B – A = B 42. Which of the following is a congruence on the group (Z, +) of integers. A) {(x, y) : x + y = 0} B) {(x, y) : x - y = 1} C) {(x, y) : x - y is even} D) {(x, y) : x - y is odd} 43. The number of automorphisms of the cyclic group of Z₆ is A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R*/H is finite C) 3+√2 ∈ H 				1, 2,			_			
 A) {(x, y): x + y = 0} B) {(x, y): x - y = 1} C) {(x, y): x - y is even} D) {(x, y): x - y is odd} 43. The number of automorphisms of the cyclic group of Z₆ is A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R*/H is finite C) 3+√2 ∈ H 	41.	Let A Then v A)	and B be none which of the following $A \subseteq B$		ubsets	of a set	X such $B \subseteq A$	that (A U B)	- (A ſ	∩ B) ⊆ A.
 A) 1 B) 2 C) 3 D) 6 44. Let R*be the multiplicative group all non zero reals and H be the subgroup of R* generated by the set {2, 3}. Then which of the following is true A) H = Q*, the multiplicative group of all rationals B) R* / H is finite C) 3+√2 ∈ H 	42.	Which A) C)	of the following $\{(x, y) : x + y \}$ $\{(x, y) : x - y \}$	ng is a c = 0} is even	congrue	nce on t B) D)	the group {(x, y) {(x, y)	$p(\mathbf{Z}, +) \text{ of inte}$ $: x - y = 1$ $: x - y \text{ is odd}$	gers.	
generated by the set $\{2, 3\}$. Then which of the following is true A) $H = \mathbb{Q}^*$, the multiplicative group of all rationals B) \mathbb{R}^* / H is finite C) $3 + \sqrt{2} \in H$	43.		_	-	_	e cyclic	~ `	•	D)	6
	44.	genera A) B) C)	atted by the set { $H = \mathbf{Q}^*$, the $\mathbf{R}^* / \mathbf{H}$ is finit $3 + \sqrt{2} \in \mathbf{H}$	[2, 3}. The nultiplication of the nultiplica	Then wh	ich of t	he follo	wing is true	e subgr	oup of R *

45.	Choos A) B) C) D)	Every infinite Every group o Every group o Every abelian	group i of order of order	is abelia 11 is cy 8 is abe	n clic lian	Č			
46.		be the symme s of order			three sy			mutator	subgroup
	A)	1	B)	2		C)	3	D)	6
47.	Let I = A)	$= 2\mathbf{Z}$ and $J = 5\mathbf{Z}$	be idea B)			Z of inte C)		J = D)	7 Z
48.	is a ge	oe an ideal of Q					x^2 }. Then whic $1 - x^2$		
	A)	X	В)	1 + X		C)	1 – X	D)	1+X-X
49.	A)	of the followin $x^{5} + 3x^{3} - 2x - 2x^{5} + 4x^{3} + x^{2} - 2x^{5}$	- 2		B) _	$x^5 + 3x$	l in $Q[x]$ $x^3 - 3x - 6$ $x^4 - 2x + 5$		
50.	which A)	be a non ident of the followin $\sigma(\sqrt{2}) = \sqrt{3}$ $\sigma(e) = \pi$			ue for c B)	σ (3) =	-	ex numl	pers. Then
51.		egree of the irre		polyno				D)	4
52.	The de	egree of the spli	itting fi	eld of x ³	3-2 ov	er Q is			
	A)	1	B)	2		C)	4	D)	6
53.	Let F 1 A)	be a field of 8 e α	lements B)	s and α α^2	∈ F be	such tha		0. Then D)	$1 + \alpha^2 = \alpha^6$
54.		B be 2 X 2 m R. Then which of A = B AB = BA				essarily $A = B$	true:		2 matrices
55.	W + (2	$f = \{(x, y) : 2x + 2, 1\}.$ (4, 0)		be a su (0, 3)	-		Then which of $(4, -3)$		owing is in $(-1, 3)$
56.		of the followin (2, 3, 4)	ng is in	the spar	n of {(1,	, 2, 1), (,	(3, 5, 4)

57. Which of the following is an eigen vector of the matrix $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. ()	0	
--	----------	---	--

- A) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ B) $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ C) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ D) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
- 58. Which of the following is orthogonal to (1, 1, 2) in the space \mathbb{R}^3 with usual inner product
 - A) (1, 1, -1) B) (1, 1, -2) C) (1, -1, 2) D) (1, 2, -1)
- 59. Which of the following matrix is a conjugate of $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$
 - A) $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix}$ B) $\begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ D) $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
- 60. Consider the system of equations

$$x + 2y - z = 2$$

 $x - y + 2z = 3$
 $2x + y + z = 4$

Then which of the following is true about the system

- A) has a unique solution
- B) has exactly two solutions
- C) has infinitely many solutions
- D) has no solution
- 61. The rank of the linear transformation T: $R^4 o R^4$ given by T (x, y, z, w) = (x y, x 2y, x 3y, x 4y) is

 A) 1 B) 2 C) 3 D) 4
- 62. Let $X = \{1, 2, 3, 4, 5\}$ and $T = \{X, \Phi, \{1, 2, 3\}\}$ be a topology on X. Then the interior of $\{3, 4, 5\}$ is

 A) $\{1\}$ B) $\{3, 4\}$ C) $\{3, 4, 5\}$ D) $\{4, 5\}$
- 63. Let X = R with usual topology and Y = R with discrete topology. Then which of the following is a continuous function from X to Y
 - A) f(x) = x for all $x \in X$ B) f(x) = 0 for all $x \in X$
 - C) f(x) = 1 + x for all $x \in X$ D) $f(x) = 1 + x^2$ for all $x \in X$

64. Let $X = \mathbf{R}$ and Y be the real line. Let $f: X \to Y$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in Q \\ 0 & \text{otherwise} \end{cases}$$

And τ be the weak topology on X generated by f. Then which of the following is an open set in X

- A) 0
- the set of all positive rationals \mathbf{Q}^+ B)
- C) the set of all positive reals R⁺
- D) the open interval (0, 1)

65. Let τ_1 , τ_2 , τ be topologies on R such that $\tau_1 \subseteq \tau_2$. Let $X = (\mathbf{R}, \tau_1)$, $Y = (\mathbf{R}, \tau_2)$ and $Z = (R, \tau)$. If $f: X \to Z$ is continuous then which of the following is necessarily true

- $f: X \to Y$ is continuous A)
- $f: Y \rightarrow Z$ is continuous B)
- $f: \mathbb{Z} \to \mathbb{X}$ is continuous C)
- D) $f: \mathbb{Z} \to \mathbb{Y}$ is continuous

66. Let $\{(\alpha, \infty) : \alpha \in \mathbb{R}\}$ be a subbase for a topology on the reals. Then the closure of (0, 1) in this topology is

A) [0, 1] B) (0, 1]

 $[0, \infty)$ C)

D) $(-\infty,1]$

Which of the following is a connected subset of the real line? 67.

- $\{x : x^2 + y^2 = 1\}$
- B) $\{x: x^2 < 1\}$
- $\{x: x^2 \ge 1\}$ C)
- $\{x: 1 + x^2 > 1\}$ D)

68. Let **R** be the real line and **R** x **R** be the product space. Which of the following is an open set in R x R

- $\{(x, y) : x \ge 0\}$ A)
- B) $\{(x, y) : y \le 0\}$
- C) $\{(x, y) : |x| < 1\}$
- $\{(x, y) : |x + y| = 1\}$ D)

69. Which of the following pairs of topological spaces are not homeomorphic?

- A) [0, 1] and **R**
- B) (0, 1) and (0, 2)
- C) (0, 1) and \mathbf{R}
- D) (0, 1) and $(0, \infty)$

Let d denote the metric on \mathbb{R}^2 defined as follows. For z = (x, y) and w = (a, b), 70.

$$d(z, w) = \frac{|x - a| + |y - b|}{3}$$

Then which of the following is a point in the open unit ball centered at the origin in this metric space

A) (0, 2) B) (0, 3)

(2, 2)C)

D) (3, 2)

Which of the following is a norm on \mathbb{R}^2 ? 71.

- A) $f(x, y) = |x| + |y|^2$
- B)
- f(x, y) = 2|x| + 2|y|C)
- f(x, y) = |x| |y| $f(x, y) = |x|^2 + |y|$ D)

	A)	1	B)	2		C)	$\frac{1}{\sqrt{2}}$	D)	$\frac{\sqrt{3}}{2}$
73.	Let f	: $\mathbf{R}^2 \to \mathbf{R}^2$ be	defined	by <i>f</i> (x,	$(y) = (2)^{-1}$	y, x). Tl	nen f =		
	A)	1	B)	2		C)	$\sqrt{2}$	D)	$\frac{1}{\sqrt{2}}$
74.	y = e A)	be a Hilbert s +2f - g and z x + y = x x + z = x	= e - f	+2g. T	hen wh	ich of th			= 2e+f+g,
75.		V be the line x the orthogonal						usual inr	ner product.
	A)	(1, 1)	B)	(2, 1)		C)	$(\frac{1}{2},\frac{1}{2})$	D)	$(\frac{3}{2},\frac{3}{2})$
76.	Let A	A, B be subseted B $\perp = X$. The	ets of a	ın inner	produ	ct space	X such that	t 0 ∉ A,	$0 \notin B$ and
		A = B	B)	A∩B:	$= \phi$	C)	AUB = X	D)	$A = B^{\perp}$
77.		$e_1, e_2,$ } be a which of the form						$let x = \sum_{i=1}^{n} x_i $	$\sum a_i e_i \in H.$
	A)	$\langle x, e_i \rangle = a_i f c$				$(a_i) \in$			
	C)	$\sum \mathbf{a}_i = \mathbf{x} $			D)	$\sum a_i $	$\big ^2 = \big\ \mathbf{x} \big\ ^2$		
78.	Let R	2 be the inner	product	space v	vith usu	al inner	product. Let	f be a fu	nctional on
	\mathbf{R}^2 de:	fined by $f(x) =$	= ⟨ x, α ⟩	where o	a = (1, 1)). Then	f =		
	A)	1	B)	2		C)	$\sqrt{2}$	D)	$\frac{1}{\sqrt{2}}$
79.	Let S Whic	be the right s h of the follow	hift ope	erator or ot true a	n l ² defi	ined by	$S:(x_1, x_2,$	\rightarrow $(0,$	$x_1, x_2,$).
	A)	S = 1			B)		n eigen value		
	C)	S is one to o	ne		D)	S(x)	$= \ \mathbf{x}\ $ for all \mathbf{x}	X	
80.	T (x,	h of the follow y) = $(x + y, y)$		the ad	joint of	the op	erator T: \mathbf{R}^2	$rac{1}{2} \rightarrow \mathbf{R}^2$	defined by
	A) C)	$(x, y) \mapsto (x, y) \mapsto (x - y)$		y)			$\mapsto (x + y, + y)$ $\mapsto (y, x + y)$	r)	

Let X be the space of all bounded sequences of real numbers with sup norm. Let $x=(x_n)$ where $x_n=\sin{(\pi/n)}$. Then ||x||=

72.

9
