17204

120 MINUTES

1.	The second ionization enthalpies of the 13^{th} group elements follow the order A) B > Al > Ga > In > Tl B) B > Ga > Tl > In > Al											
	C)	B > Al > Ga			,		a > 11 > 11 > 6 a > TI > AI > 6					
2.		rborane C ₂ B ₄ H		e struct								
	A) C)	Closo – tetrah Closo – octah			B) D)		- trigonalbipyr no - icosahedr					
3.	Which and Xe A) B) C) D)	Structures are Structures are Structures are	same w differen	vith 0, 2 ont with 0, 1	and 1 l), 1 and and 2 l	one pai 2 lone one pai	rs of electrons pairs of electrons rs of electrons pairs of electrons	respecti ons resp respecti	ively ectively vely			
4.	Which A)	among the following S ₄ N ₄	lowing i	is therm SiC	ochron	nic? C)	Al_2Se_3	D)	XeOF ₄			
-	,		,		,	,		,	•			
5.	Three A)	most abundant Fe, Co & Ti					st are Fe, Ti & Mn	D)	V, Mn & Cu			
6.	_	ten bronzes use O _{3.} Where M is	d in the	produc	tion of	metalli	c paints are no	n stoichi	iometric			
	A) C)	Na or K A lanthanide			B) D)		caline earth me e above	etal				
7.	Which A) C)	among the following the Ce ⁴⁺ , Gd ³⁺ , Lu Ce ³⁺ , Pm ³⁺ , E	1^{3+}	lanthani	de ions B) D)	Gd^{3+} ,	spin only magr Pm ³⁺ , Er ³⁺ Gd ³⁺ , Lu ⁴⁺	netic mo	ment?			
8.	The ac	eidity of oxides	of Mn 1	follows	the ord	er						
	The acidity of oxides of Mn follows the order A) MnO < MnO ₂ < Mn ₂ O ₃ < Mn ₂ O ₇											
	B)	$MnO < MnO_2$										
	C) D)	$Mn_2O_7 < MnO$ $MnO < Mn_2O$										
9.	Which among the following complexes show both linkage isomerism and stereo isomerism?											
	(i)	[Pt (Cl ₂) (NH ₃	3) ₄] Br ₂		(ii)	[Pt(NI	$H_3)_4][PtCl_4]$					
	(iii)	[Co Cl(en) ₂ NO	O ₂] Br		(iv)	[Co(N	[H ₃) ₅ SCN] Cl ₂					
	A)	Both (i) and (i	ii) only		B)	(i) , (ii) & (iv) only					
	C)	(iii) only			D)	Both (iii) and (iv) or	nly				

10.	Which of the following complexes show $M \longrightarrow L$ charge transfer?											
	A)	$[Co(CO)_6]$			KMnO ₄							
	C)	$[Co(NH_3)_6]^{3+}$		D)	$\left[\mathrm{Ni}(\mathrm{H_2O})_6\right]^{2+}$							
11.	The g	ground term symb	ools of V ³⁺	and Co ²⁺ i	ons are respectively	,						
	A)	${}^{3}F_{4}, {}^{4}F_{3}/_{2}$	B) 3F_2	$^{4}F_{7/2}$	C) ${}^{4}F_{3/2}$, ${}^{3}F_{4}$	D)	$^{3}D_{2}, \ ^{4}F_{7/_{2}}$					
12.	chror	e reaction of [Co(mium based produ is exclusively [act/s		$[Cr(H_2O)_6]^{2+}$ in wa	iter as sol	vent, the final					
	A) B)	contain [Cr(SC minor components)	$(N)(H_2O)_5$	$\begin{vmatrix} 1_2O_{5} \end{vmatrix}$	or component and	[Cr(NCS	$(H_2O)_5]^{2+}$ as					
	C)		Cr(SCN)(I	$(H_2O)_5 1^{2+}$								
	D)											
13.	Which among the following complexes obey the 18 electron rule?											
	(i) Ir	$Cl_2(CH_3)(CO)(PI$	Ph ₃), (ii)	$\operatorname{Cr}(\mathfrak{n}^6 - \operatorname{C}_6)$	H_6 ₂ , (iii) $V(CO)_6$	5, (iv)	$Mn_2(CO)_{10}$					
	A)	i, ii & iv only		B)	i, iii & iv only							
	C)	i & iii only		D)	ii & iv only							
14.	Choo	The three trinuclear carbonyls known are, Fe ₃ (CO) ₁₂ , Os ₃ (CO) ₁₂ and Ru ₃ (CO) ₁₂ . Choose the correct statement regarding their structures. A) All are iso-structural.										
	B)	,										
	C)											
	D)											
15.	Which among the following is a fluxional organometallic compound?											
	A)	$Mn(n^5-C_5H_5)_2$		B)	$Fe_2(CO)_9$							
	C)	$Co_4(CO)_{12}$		D)	$PdCl_2(cod)$							
16.	The catalyst used in Monsanto acetic acid process is											
	A)	RhH(CO)(PPh	3)3	B)	$[Rh(CO)_2I_2]$							
	C)	RhCl(PPh ₃) ₃		D)	$[Rh(CO)_4I_3]$							
17.					the folding of prote		s? - 2+					
	A)	K^{+}	B) Na		$C) \qquad Ca^{2+}$	D)	Fe ²⁺					
18.			which whe		cule attaches Fe(II)	is oxidise	ed to Fe(III)					
	A)	Myoglobin		B)	Hemerithrin							
	C)	Haemoglobin		D)	Hemocyanin							

- 19. Which of the following are, respectively, iron storage and transport proteins?
 - A) Rubredoxin and ferrodoxin B) Ferritin and transferrin
 - C) Myoglobin and hemoglobin D) Hemocyanin and hemerythrin
- 20. The number of ATP reducing units used by nature to convert one N_2 molecule to ammonia is
 - A) 12
- B) 10
- C) 8
- D) 16
- 21. The intermediate formed in the following reaction is a

A) carbocation

B) carbanion

C) free radical

- D) carbene
- 22. Arrange the following in the increasing order of acidity.

(i)
$$OOH$$
 $COOH$ $COOH$ $COOH$ $COOH$ $COOH$ OOH O

- A) (i) < (ii) < (iv) < (iii)
- B) (i) < (iv) < (iii) < (ii)
- C) (i) < (iii) < (iv) < (ii)
- D) (iii) < (ii) < (iv) < (i)
- 23. Which of the following statements is wrong?
 - A) Benzene, a [6] annulene is aromatic
 - B) Cyclobutadiene, a [4] annulene is antiaromatic
 - C) Cyclooctatetraene, an [8] annulene is nonaromatic
 - D) Cyclodecapentaene, a [10] annulene is aromatic
- 24. The major product of the following reaction is

$$\begin{array}{c|c}
 & & & \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

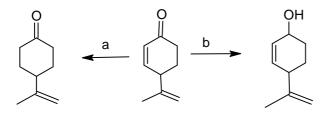
25. The major product X formed in the following reaction is

- A)
- B)
- C) 0
- D)

26. The effective transformation of acetophenone to ethylbenzene can be effected by

- (i) Clemenson reduction
- (ii) Rosenmonds reduction
- (iii) Wolf Kishner reduction
- (iv) LiAlH₄
- A) (i) and (ii) only
- B) (i) and (iii) only
- C) (i) and (iv) only
- D) All the four

27. The following reaction is an application of –


MeOOC COOMe

1) NaH

2) H⁺,
$$\Delta$$

- A) Mannich reaction
- B) Thorpe reaction
- C) Dieckmann condensation
- D) Aldol condensation

28. The correct reagents required for the following transformations are

- A) 'a' is LiAlH₄ at room temperature and 'b' is NaBH₄
- B) 'a' is LiAlH₄ at -78°Cand 'b' is NaBH₄
- C) 'a' is Li in liq.NH₃ and 'b' is NaBH₄/CeCl₃
- D) 'a' is DIBALH and 'b' is NaBH₄

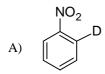
- 29. The number of optical isomers and meso forms possible for the compound CH₃(CHBr)₅CH₃ are:
 - A) 12 optical isomers and 4 meso forms
 - B) 16 optical isomers and 4 meso forms
 - C) 32 optical isomers without meso forms
 - D) 13 optical isomers and 3 meso forms
- 30. The absolute configurations of the following compound D-(+) Xylose is

- A) 2R, 3S, 4S
- B) 2R, 3R, 4S
- C) 2S, 3R, 4S
- D) 2R, 3S, 4R
- 31. The most suitable reagent for the resolution of a racemic 2-butanol is
 - A) acetone

- B) citric acid
- C) optically pure (+) lactic acid D)
- optically pure mannitol
- 32. Which of the following is not true?
 - A) Boat conformation is the preferred conformation of 1, 4-cyclohexanediol
 - B) *cis*-1, 3-dimethylcyclohexane is a *meso* compound
 - C) In cis-1, 3-cyclohexanediol, the diaxial is the preferred conformation
 - D) In 2-bromocyclohexanone, the bromine is at equatorial position
- 33. Benzophenone is used as a sensitizer for 1,3-butadiene to form 1,2-divinylcyclobutane because
 - A) The triplet energy of 1,3-butadiene is greater than that of benzophenone
 - B) The triplet energy of benzophenone is greater than that of 1,3-butadiene
 - C) The singlet energy of benzophenone is much higher than that of 1,3-butadiene
 - D) The singlet energy of 1,3-butadiene and benzophenone are almost equal
- 34. In the reaction sequence

The major products X and Y are

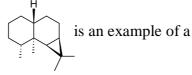
- 35. Match the following:
 - 1. Terpene


Protein a

Edman method 2.

- b Camphor
- Multibranched polysaccharide of glucose
- Cellulose c
- Linear chain of β-linked glucose
- d Glycogen

- A) 1-b, 2-c, 3-a, 4-d
- B) 1-b, 2-a, 3-d, 4-c
- C) 1-a, 2-b, 3-c, 4-d
- D) 1-b, 2-a, 3-c, 4-d
- 36. The major product of the following photochemical reaction is


$$\frac{\text{NO}_2}{\text{CF}_3\text{COOD}}$$

37. The compound

- Monoterpenoid A)
- B) Diterpenoid
- Sesquiterpenoid C)
- D) Triterpenoid
- 38. Which of the following compounds has/have a β-glycosidic linkage?
 - (I) sucrose
- (II)starch
- (III) cellulose
- (IV) glycogen

Only I & II A)

- Only I,II & III B)
- Only I, II & IV C)
- D) III only
- 39. A vitamin which is a metal complex is
 - Vitamin A A)
- B) Vitamin B₁₂
- Vitamin C
- Vitamin K D)
- 40. Which among the following lipids are not esters of fatty acids?

C)

- Bee wax (ii) vegetable oils (iii) cholesterol (iv) prostaglandin (v) fat

- i, ii, v only A)
- i, iii, iv only C) B)
- ii, iv only
- D) iii, iv only
- 41. The miller indices of a plane which cuts the three crystallographic axes at 1/2a,-1/3b and 1/3c is
 - $2\overline{3}3$ A)
- B) 233
- <u>2</u>3<u>3</u> C)
- 233 D)

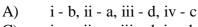
42.	The nu A)	umber of C-ator 2	ms in oi B)	ne unit cell of d	liamond C)	is 8	D)	6		
43.	Stater Stater	below are two nent I: Crysta appea nent II: X-ray specie fy the correct cl	l structurs to be cannot	ure of KCl as d primitive cubi- distinguish bet	c unit ce ween K	ell even though	it is fcc	2.		
	A) B) C) D)	Statement I is Statement I is	correct		II is not II is inc	orrect		f statement I on of statement I		
44.		Mean free path of a gas is inversely proportional to pressure								
	A)	I & II only	B)	I & III only	C)	II & III only	D)	I, II & III		
45.	mole o	is the change in of ideal gas from $R = 8.3 \mathrm{JK^{-1}}$	n a pres		_		-			
	A)	-5.7kJ	B)	5.7kJ	C)	-57 kJ	D)	57 kJ		
46.	tempe	ntropy change or rature is (latent 22 Jmol ⁻¹	heat of	fusion of ice =	333.6 J	[/g)				
47.										
48.		is the rotation nuclear diatomic $1/ \theta_{rot} $				rotational part $2T/\theta_{rot}$	cition fu	anction for a $8T/\theta_{rot}$		

49. For the reaction $X + Y \rightarrow Z$; starting with different initial concentration of X and Y, initial rate of reaction were determined graphically in four experiments as shown in the following table. The rate law for the reaction from the data in the table is

Sl. No.	[X] _o /M (Initial conc.)	[Y] o / M (Initial conc.)	Rate M s ⁻¹
1	1.6 x 10 ⁻³	5 x 10 ⁻²	10 ⁻³
2	3.2 x 10 ⁻³	5 x 10 ⁻²	4 x 10 ⁻³
3	1.6 x 10 ⁻³	10 ⁻¹	2 x 10 ⁻³
4	3.2 x 10 ⁻³	10 ⁻¹	8 x 10 ⁻³

- A) $r = k[X]^2 [Y]^2 B$ $r = k[X]^2 [Y] C$ $r = k[X] [Y]^2 D$ r = k[X] [Y]
- 50. Given below are two statements

Statement I: The rate constant of a reaction increases with temperature.


Statement II: The increase in rate constant is mainly due to increase in bimolecular collisions.

Identify the correct choice from the following

- A) Statement I is correct and statement II is the correct explanation of statement I
- B) Statement I is correct and statement II is not the correct explanation of statement I
- C) Statement I is correct and statement II is incorrect
- D) Statement I is incorrect and statement II is incorrect
- 51. For a chemical reaction obeying Arrhenius equation which one of the following plots will be linear (k rate constant)
 - A) k versus T

- B) $\log k$ versus T
- C) $\log k \text{ versus } \log T$
- D) $\log k$ versus 1/T
- 52. Primary kinetic salt effect on ionic reaction is best explained by
 - (I) Collision Theory (II) Absolute reaction rate Theory (III) Debye –Huckel Theory
 - A) II & III only
- B) I only
- C) II only
- D) I & III only
- 53. The mean ionic activity coefficient for the electrolyte $M_{\nu_+} X_{\nu_-}$ is related to its ionic strength by (γ_{\pm} is the mean ionic activity coefficient, $z_+ \& z_-$ are the charges of cations and anions respectively, I the ionic strength)
 - A) $\log \gamma_{\pm} = 5.09 z_{+} z_{-} \sqrt{I}$
- B) $\log \gamma_{\pm} = -5.09 z_{+} z_{-} \sqrt{I}$
- C) $\log \gamma_{\pm} = -0.509 z_{+} z_{-} \sqrt{I}$
- D) $\log \gamma_{\pm} = 0.509 z_{+} z_{-} \sqrt{I}$
- 54. Which among the following is a cell without liquid junction?
 - A) $Cu|Cu^{2+}|Zn^{2+}|Zn$
 - B) $Ag|AgCl_{(s)}|HCl(0.1M)|HCl(0.05M)|AgCl_{(s)}|Ag$
 - C) $Pt|H_2(1atm)|HCl(a_1)|AgCl|Ag|AgCl||HCl(a_1)|H_2(1atm)|Pt$
 - D) Both B & C

55.	Which among the following statements are true for overvoltage of an electrode? (I) Overvoltage depends on the nature and physical state of the electrode (II) Overvoltage depends on the physical state of the substance deposited (III) Overvoltage depends on the current density employed												
	A)	I only	B)	I & III	only	C)	I & II only	D)	I, II & III				
56.	The m A) B) C) D)	3) $\frac{\Delta G}{\Delta H} \times 100$ C) $\frac{\Delta G}{\Delta U} \times 100$ O) $-nFE$											
57.	Multila A) C)	ayer adsorption Freundlich iso BET isotherm	otherm	dealt w	ith B) D)	_	nuir isotherm in Isotherm						
58.	The surface tension of the solvent is γ_0 and surface tension of a solution is γ then the surface pressure π is given by												
	A)	$\gamma_0 - \gamma$	-	$\gamma_0 + \gamma$		C)	γ_0 / γ	D)	$\gamma_0 \times \gamma$				
59.	Which of the following is an associated colloid?												
	A)	Gold sol	B)	gel		C)	micelles	D)	aerosol				
60.	Match the following												
	Column I					Co	lumn II						
	(i) A cataly different		eactant	in	,	legative atalysis	-					
	(ii) A catalyst and reactants in the same phase					b) Heterogeneous catalysis							

B) i - b, ii - d, iii - a, iv - c

c) Autocatalysis

d) Homogeneous

catalysis

D) i - b, ii - d, iii - c, iv - a

61. The time dependent Schrodinger equation is

A catalyst reduces the

speed of the reaction

One of the products of the

reaction acts as a catalyst

A)
$$\widehat{H} \Psi = E \Psi$$

(iii)

(iv)

B)
$$i\hbar \frac{\partial \Psi}{\partial t} = \widehat{H} \Psi$$

C)
$$\nabla^2 \Psi + \nabla \Psi = E \Psi$$

D)
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \Psi}{\partial x^2} + V \Psi = E \Psi$$

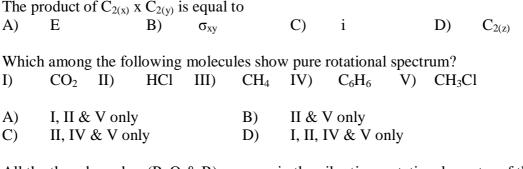
								- 2	
62.	If the o	energy of a pared for the exci	rticle in a	the par	al box o ticle int	of edge l	ext higher o	$\frac{3h^2}{8mL^2}$ the energy level	is
	A)	$\frac{3h^2}{8mL^2}$	B)	$\frac{6h^2}{8mL^2}$		C)	$\frac{9h^2}{8mL^2}$	D)	$\frac{3h^2}{4mL^2}$
63.	The nu A)	umber of radia 3, 3	l and ang B)	gular no 2, 2	des in a	a 4f orb C)	ital are responded of the original of the orig	pectively D)	0, 2
64.	The ef A)	fective nuclea 3.9	r charge B)	felt by 6.7	a 2p ele	ectron o	of a nitroger 7.0	n atom is D)	4.2
65.	The bo	ond order of N 2	O bond B)	in nitric 2.5	oxide i	is C)	3	D)	1.5
66.	Which (I) (III)	NO ₃ , NF ₃ NF ₃ , HN ₃	ing pairs	are iso	structur (II) (IV)	ral? NO ₃ , NH ₃ ,			
	A) C)	I, II & IV on I & IV only	ly		B) D)	I & II II & I	only V only		
67.		round term syr \sum_{g}^{1}	nbol of a B)	$^{3}\sum_{g}^{0}$	lecule i		$3\sum_{g}$	D)	$^{1}\sum_{g}$ -
68.	The ty A) C)	rpe of molecula Dipole – dipo Ion- dipole		ctions in	n liquid B) D)	Dipole	e –induced	dipole induced dip	oole
69.	Match	the following	molecul	les to th	eir poir	nt group	os.		
	I) C II) F III) S	POCl ₃ b SF ₆ c	Point gr a) C _s b) O _h c) C _{3v} d) D _{2h}	roup					
	A) C)	I - d, $II - c$, $II - c$, $II - d$, I			B) D)		II – a, III – II – c, III –		
70.	Which A)	among the fo C_{2v}	llowing B)	point gr C _{3V}	oups is	both al	Delian and C_{2h}	cyclic? D)	C_4
71.	For CO A) B) C) D)	O ₂ molecule The asymme Bending vibr Symmetry str Symmetry str	ations is retching	Raman is Rama	active an and	and IR IR inact	inactive tive		

72.	The j	_	$C_{2(x)} \times C_{2(y)} i$ B)	s equal to σ_{xy}	C)
73.	Whic	ch among tl	he following	molecules	show pu

HCl

III)

II)


I, II & V only

II, IV & V only

 CO_2

A)

C)

74.	All t	he three bra	nches (P, Q	& R) are s	een in the v	ibration- ro	otational spe	ctra of the	•
	mole	cule							
	A)	NO	B)	CO	C)	HC1	D)	DCl	

B)

D)

- 75. Which among the following nuclei are NMR active (II) ^{16}O , (III) ^{19}F , (IV) ^{14}C , (V) ^{31}P (I) 14 N.
 - I, II, III & V only A) B) II & IV only I, III & V only D) All the above C)
- For ¹⁴N₂ molecule the rotational constant is 2cm⁻¹. When it is exposed to 76. monochromatic 29697 cm⁻¹ laser, the first scattered Stokes line for ¹⁴N₂ will be at 29709 cm⁻¹ 29685 cm⁻¹ C) 29705 cm⁻¹ D) A) B)
- 77. Match the following carbonyl stretching frequencies with the correct compounds

Frequencies (cm ⁻¹)	Compound
I) 1735	a) O
II) 1820	(q
III) 1770	(c)
IV) 1725	d) 0

I- b, II- d, III- c, IV-a I-c, II-d, III-b, IV-a A) B) I-b, II-c, III-d, IV-a I-b, II-d, III-a, IV-c C) D)

78. The number of proton NMR signals shown by the compound

- A) 6
- B)
- C) 8
- D) 9

79. In the mass spectrum of C_2H_4ClBr , the ratio of intensities of m/z 142: 144: 146 will be

- A) 4:3:1
- B) 2:4:1

7

- C) 3:4:1
- D) 3:3:1

80. The esr spectrum of a radical with a single magnetic nucleus is split into 6 lines. What is the spin of the nucleus?

- A) 3
- B) 5/2
- C) 5
- D) 3/2

81. Which of the following is a redox indicator?

- A) Methyl orange
- B) Methyl red
- C) Phenolphthalein
- D) Diphenylamine

82. The numbers 3.47, 2.43, 8.35 and 7.85 when rounded off to two significant figures are respectively as follows

- A) 3.5, 2.4, 8.3 and 7.8
- B) 3.5, 2.4, 8.4 and 7.9
- C) 3.5, 2.4, 8.4 and 7.8
- D) 3.5, 2.4, 8.3 and 7.9

83. The standard deviation of the mean is called as

- A) Population standard deviation
- B) Coefficient of variation
- C) Relative standard deviation
- D) Standard error

84. The average particle size in gravimetric analysis is increased by

- A) Using concentrated reagents for precipitation
- B) Using low temperature condition for precipitation
- C) Primary precipitate is subjected to digestion
- D) None of the above

85. Match the following:

Techniques	Type of equilibrium
(i) Liquid chromatography	a) Partition between gas and liquid
(ii) Gas chromatography	b) Partition between super critical fluid
	and bonded surface
(iii) Super fluid chromatography	c) Adsorption
(iv) Column chromatography	d) Partition between immiscible liquids

- A) i-c, ii- a, iii- b, iv- d
- B) i d, ii- a, iii- b, iv- c
- C) i-d, ii- a, iii- b, iv- d
- D) i b, ii- a, iii- d, iv- c

86.	Which I)	n among the fol Flame ionizat	_		detection methods used in GC? II) Electron capture detector						
	III)	Mass spectra			IV)		nal cond			or	
	A) C)	I & II only III & IV only			B) D)	II & II I, II, I	II only II & IV				
87.	Biome A) B) C) D)	Ion exchange Gas chromato Gel permeatic Electrophores	chroma ography on chroi	atograph	ny	rsh envi	ronmen	ts are b	est sepa	arated by	
88.	7.6 mi	romatographic n with a base lif f 9.4 min with a	ne widtl	h of 0.9:	5 min a	$nd \gamma - 1$	Γerpiner	ne elute	with a	retention	
	A)	2. 25	B)	1.12		C)	3.60		D)	1.80	
89. When a monochromatic beam of light of wavelength 540 nm is passed through a sample solution in cell 1cm thick, if the transmittance is 0.2, what will be the overal reduction in intensity when the path length is doubled for the same monochromatic radiation?										the overall	
	A)	88 %	B)	80 %		C)	96 %		D)	90 %	
90.	interfe	among the foll	?							e ionization	
	(I) C	a (II) I	ζ.	(III)	Sr	(IV)	Cs	(V)	La		
	A) C)	I & II only I, II & IV onl	y		B) D)	,	k IV on V only	ly			
91.	Generally, AAS is used for the estimation of metal ions. However, it cannot be successfully used for the estimation of Al, Ti, W, Mo, V, Si, etc, when flame is used as a source of radiation. This is mainly due to: A) They will not interact with the characteristic radiation in the flame. B) They give rise to oxides in the flame. C) Their vapors corrode the instrumental parts. D) Detection and measurement of their absorption signals are difficult.										
92.	from l	inetic energies N ₂ molecules w of these electrors -15.59 eV, -1 -5.63 eV, -4.	vith He (ons are 16.69 eV	(I) line i respecti	incident	t radiation 15.59		22 eV). 69 eV		•	
93.	A solu A) C)	ution with a pH decreased by increased by	100 tim	ies	neutral B) D)	increa	I ⁺ ion co sed by 1 ased by	100 tim	es		

94.	In wh		llowing ele	ectrochen	nical	al analytical methods is a fixed potential													
	A)	Voltamet	•		B)		perometry												
	C)	Cyclic vo	ltametry		D)	Stri	pping Volta	metry											
95.	_	arography the		ship betw	een l	limiting	current and	l concentrati	ion of the										
	A)	Ohms lav	V		B)	Ner	nst equatior	ı											
	C)	Faraday's	s law		D)	Ilko	vic equation	n											
96.	Whe	n the pH of	a solution i	s altered	by 1	unit the emf of the hydrogen electrode will													
	A)	Increase 1	•		B)	Dec	rease by 59	mV											
	C)	Increase 1	oy 0.059 m	V	D)	Wil	l not change	e											
97.	Phas	e transitions	of a solid	can be ide	entif	ied by													
	A)	TG	B)	DTG		C)	DSC	D)	Both B &	C									
98.	Matc	the follow	ring for a ra	adiometri	ic pre	ecipitation	on titration.												
	(Column I			Column II														
	i)	The titrant	is labelled	with its		a) F	Radioactivit	y of the solu	ition has a										
		radioactive						the equivale											
		The reagent		with a				of the soluti											
		radioactive						the equivale											
	iii)	Both reaction	-		led		-	of the soluti											
		with radioactive isotopes					ncreases aft	er the equiv	alence point.										
	A)	(i) - c, (ii)) – a, (iii) -	- b	B)	(i) -	- b, (ii) – c,	(iii) – a											
	C)) – a , (iii) –		D)		-c, (ii) $-b$,												
99.	3.7×	3.7×10^{17} disintegrations per second is called																	
	A)	curie	B)			C)	rad	D)	rem										
100.	Whi	ch of the foll	owing is a	dicadvan	togo	of activ	votion analy	oio?											
100.	A)		ique is not		_		ation analy	515:											
	B)		-	•			of Al Mo T	Ti, V and Nb	•										
	C)		-				_	ls, precious											
	D)		uracy cann					not a quant											
101.	Whic	ch among th	e following	g is false	with	respect	to microwa	ve organic s	synthesis?										
	A)	_	_	•			oorly absor	_	•										
	B)	Compour	nds with hig	gh dielect	tric c			ater, ethano	l and										
	C)		le, tend to		-	ic and	alinhatic hy	drocarbone	or compound	C									
	<i>C)</i>	-						rowave irrac	-	•									
	D)		-							e									
	٠,	_			_		_		III IIOt IIdvi	Changes to the physical properties of a compound or material will not have any influence on the susceptibility to microwave radiation.									

102.	hydratase enzyme from <i>Rhodococcus</i> is used to convert								
	A)	acrylonitrile into acrylamide							
	B) penicillin G into 6-aminopeniillanic acid								
	C)	lactose into glucose and galactose							
	D)	ethanol to acetic acid							
103.	Which among the following cannot be regarded as a possible 'green' advantage in using Phase Transfer Catalysts (PTC)?								
	A)	Because of reduced activation energy, these reactions can often be run only at higher temperatures, which may reduce by-product formation							
	B)	PTC catalysed reactions are often very rapid, one reason being that anions in the organic phase have few associated water molecules, making them highly							
	C)	reactive through reduction in activation energy. The product separation is often simple, resulting in less waste.							
	D)	Since the reaction is two phase, simple benign solvents can often be used since PTC avoids the need to find a solvent that will dissolve all reactants							
104.	04. Atom economy is defined by								
	A)	$100 X \frac{\text{actual quantity of products achieved}}{\text{theoretical quantity of products achievable}}$							
	B)	$100 X \frac{\text{yield of desired product}}{\text{amount of substrate converted}}$							
	C)	$\frac{\text{Relative molecular mass of desired product}}{\text{Relative molecular mass of all reactants}}$							
	D)	$100 X \frac{\text{amount of carbon in product}}{\text{total amount of carbon present in reactants}}$							
105.	The na	nomaterial used in LED and fluorescent displays is							
	A)	Si B) CdSe C) ZnS D) Li_3N							
106.	(I)	among the following are top – down fabrication of nanomaterials? Photolithography (II) e- beam lithography							
	(III)	Vapour phase synthesis (IV) Soft lithography							
	A)	I, II, & III only B) I & II only							
	C)	I, II & IV only D) II & III only							
107.	The piezoelectric ceramic material which is used in gas lighters is A) Al ₂ O ₃ B) SiO ₂								
	C)	Cordierite D) Lead Zirconium Titanate (LZT)							

108.	What is A)	s the colour of Blue	_	nopartio Green	cle in th	e size (· C)	~30nm)? Red	D)	Colourless
109.		among the foll O (ii) N ₂ O (ii	_		•	-		_	acetyl nitrate
	A) C)	(i), (iii), (iv) & (i), (ii), (v) &	, ,	•	B) D)	(i), (ii), All the	, (iii), (iv) & (v above	vi) only	
110.		spheric ozone d FC (ii)	epletion N ₂		nly caus CH ₄	sed by (iv)	NO		
	A) C)	(i), (iii) & (iv) (i), & (iv) only	•		B) D)	(i), (ii) All the	& (iii) only above		
111.	Acid ra	ain is a rain wh	-	H of ra > 5.6	in wate	r is C)	< 5.6	D)	between 7 & 5.6
112.	A) B) C) D)	y of soil is incr Increasing alk Increasing the Increasing acid Increasing the	alinity cation e dity anion ex	exchang xchang	e capac	ity			
113.	Match	Monomer	nonome	rs with	the cor		ymer.		
			_CI		•				
		(i)			a) Or				
		(ii) F ₂ C=	=CF ₂		<i>'</i> 1 •	ystyrene	2		
		(iii) =	─Ph ─CN		c) PV(
		(iv)	CIN		d) Tef	IOII			
	A) C)	i -d, ii - a, iii- i- b, ii - a, iii -			B) D)		- d, iii - b, iv - - c, iii - b, iv -		
114.	Super A) C)	glue is a polym methyl-α —cy Caprolactam		late	B) D)		acrylate and formalde	hyde	
115.	Styren A) C)	e can undergo p Radical polym Anionic polyn	nerisatio	n	via B) D)	Cation All the	nic polymerisa above	tion	

116. Match the following

	Column I	Column II			
a)	Z-poly(2-methyl-1,3-butene)	(i) A polycarbonate			
b)	Polybutylenesuccinate	(ii) A Plasticizer			
c)	Dibutyl phthalate	(iii) Natural rubber			
d)	Laxen	(iv) A biodegradable synthetic polymer			

- A) a- ii, b- i, c- iv, d- iii
- B) a- ii, b- iii, c- iv, d- i
- C) a- iii, b- i, c- iv, d- ii
- D) a- iii, b- iv, c- ii, d- i
- 117. Which among the following drugs contain a β –lactum ring?
 - A) Paracetamol
- B) Penicillin

C) Morphine

- D) Diazepam
- 118. The first effective antibiotic drug introduced clinically was
 - A) Sulphanilamide
- B) Gentamicin

C) Penicillin

- D) Chloramphenicol
- 119. Match the following items of column I and column II

Column I	Column II
(i) Antacid	a) loratadine
(ii) Analgesics	b) Barbituric acid
(iii) Tranquiliser	c) Aspirin
(iv) Antihistamine	d) Cimitidine

- A) i-d, ii-a, iii-b, iv-c
- i d, ii b, iii a, iv c
- C) i b, ii a, iii d, iv c
- i d, ii c, iii b, iv a
- 120. An alkaloid which is used as an antimalarial drug is
 - A) Morphine

B) Nicotine

B)

D)

C) Quinine

D) Caffeine