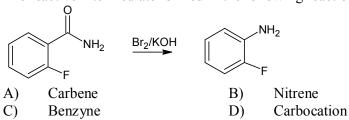
1.	Which one of the following indicates the correct order of variation in atomic size:											
	A)	B > Be > C >	N		B)	Be > 0	C > N > B					
	C)	Be > B > C >	N		D)	N > C	> B > Be					
2.	Which	of the following	ng elem	ents is r	netalloi	d?						
	A)	C	B)	P		C)	Pb	D)	As			
3.	The se	econd ionization	n energy	of C,N	,O and	F is of	the order					
	A)	C < N < O < I	7		B)	C < N	< F $<$ O					
	C)	O < N < C < I	7		D)	C < E	< O $<$ N					
4.		inding energy tively then the					nove a neut					
	A)	3.58	B)	7.76		C)	4.24	D)	7.98			
5.	The re	eciprocal of dec	ay cons	tant λ is	called							
	A)	Average life	,		B)	Half li	ife					
	C)	Natural life			D)	Root 1	mean life					
6.	The hi	ghest oxidation	state a	mong tr	ansition	n eleme	nts is					
	A)	+7 by Mn		Ü	B)		Os&Ru					
	C)	+9 by Rh			D)	+6 by	Cr					
7.	Which among the following is the most acidic aqua ions											
	A)	$[Fe(H_2O)_6]^{3+}$			B)							
	C)	$\left[\mathrm{Cr}(\mathrm{H_2O})_6\right]^{3+}$			D)	[Co(H	$[{}_{2}O)_{6}]^{2+}$ $[{}_{2}O)_{6}]^{3+}$					
8.	The strong yellow colour of Ce ⁺⁴ ions is due to											
	A)	d-d transition										
	B)	f-f transition										
	C)	Metal to ligan	d charg	e transf	er							
	D)	Ligand to met	al charg	ge transi	fer							
9.	The m	ost effective m	ethod o	f separa	tion and	d purifi	cation of lar	nthanides i	is by			
	A)	Ion exchange	column		B)	Fraction	onal crystall	lization				
	C)	Solvent extrac	etion		D)	Comp	lex formation	on				
10.	+2 oxi	idation states an	nong th	e lantha	nides a	re show	n by					
	A)	Ce & Pr	-		B)	Pm &						
	C)	Eu & Yb			D)	Gd &	Lu					

11.	Which of the following shows coordination isomerism? A) $[Co(NH_3)_6][Cr(CN)_6]\&[Cr(NH_3)_6][Co(CN)_6]$ B) $[PtCl_2(NH_3)_4]Br_2\&[PtBr_2(NH_3)_4]Cl_2$ C) $[Co(NO_2)(NH_3)_5]Cl_2\&[Co(ONO)(NH_3)_5]Cl_2$ D) $[Co(NH_3)_5Br]SO_4\&[Co(NH_3)_5SO_4]Br$									
12.	Which of the following statements is/are true? I. $[Ni(CO)_4]$ is tetrahedral and diamagnetic II. $[NiCl_4]^2$ is square planar and paramagnetic III. $[Fe(CN)_6]^4$ is octahedral and diamagnetic IV. $[Fe(CN)_6]^3$ is octahedral and diamagnetic	$[Ni(CO)_4]$ is tetrahedral and diamagnetic $[NiCl_4]^{2-}$ is square planar and paramagnetic $[Fe(CN)_6]^{4-}$ is octahedral and diamagnetic								
	A) I, II & III B) I & II C) II & IV only D) II, III	I only & IV								
13.	The IUPAC name of the complex [CrCl(OH)(H ₂ OA) Chlorohydroxodiaquadiamminechromium(B) Diaquadiamminechlorohydroxochromium(C) Diaquadiamminehydroxochlorochromium(D) Diamminediaquachlorohydroxochromium(D)	III)nitrate III) nitrate III) nitrate								
14.		ral complexes with w spin gh spin	electronic							
15.	The ground term symbol for V^{2+} ion is A) ${}^4F_{9/2}$ B) ${}^4F_{3/2}$ C)	$^{4}G_{5/_{2}}$ D)	$^{2}G_{5/_{2}}$							
16.	The possible number of J values for a ³ G term are A) 2 B) 3 C)	4 D)	9							
17.	The magnetic moment of a complex is $5.9\mu_B$. Who complex? A) $[Co(H_2O)_6]^{3+}$ B) $[Fe(CO)_6]^{3+}$ B) $[Fe(CO)_6]^{3+}$ B) $[Fe(CO)_6]^{3+}$ C) $[Fe(H_2O)_6]^{3+}$ D) $[Fe(H_2O)_6]^{3+}$	ich among the follo $[N)_6]^{3-}$ $[2O)_6]^{2+}$	wing is the							
18.		order $N_2 < NO^+ < CO$ $CN^- < CO < NO^+$								
19.	Which among the following complexes obey the 1 (i) Fe(C ₅ H ₅) ₂ ,(ii) Cr(C ₅ H ₅) ₂ ,(iii) Cr(C ₆ H ₆) ₂ , (iv) V(
	· · · · · · · · · · · · · · · · · · ·	t iv only v only								

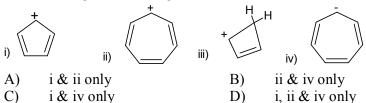
20.	The st	ructure of Fe(CO)									
	A)	Square pyramida		B)			al bipyram	idal			
	C)	Pentagonal pyran	mid	D)	I	Pentag	onal				
21.		hemoglobin, iron									
	A)	High spin Fe(III)		B)		_	oin Fe(III)				
	C)	High spin Fe(II)		D)	I	Low sp	oin Fe(II)				
22.	Hydro biomo	xylation of hyd lecule	rocarbons	by p	plant	s and	animals	are	done	by	the
	A)	Vitamin B12		B)]	Ferrido	oxin				
	C)	Cytochrome P 4	50	D)			rythrin				
	,	,		,			J				
23.	In aluı	minothermite proc	ess, alumii	nium a	acts a	S					
	A)	Oxidising agent	,	B)			ng agent				
	C)	Catalyst		D)		Flux	00				
		•									
24.	Which	among the fo	llowing m	netals	are	purifi	ed by V	anArl	cel te	traiod	lide
	decom	position method?				_	-				
	Ti, Zr,	Mn,Th									
	A)	Ti only		B)	2	Zr only	I				
	C)	Ti & Mn only		D)	-	Γi, Zr d	& Th only				
		-					•				
25.	Steel v	with very hard sur	face is prep	oared b	by						
	A)	Nitriding proces	S	B)	(Cemen	tation prod	cess			
	C)	Annealing proce	SS	D)	-	Гетре	ring proce	SS			
				ŕ		-	- 1				
26.	The or	ganometallic used	d in the hyd	lrofori	myla	tion of	alkenes is				
	A)	$Ti(C_2H_5)Cl_3$	•	B)	-	CoH(C					
	C)	RhCl(PPh ₃) ₃		D)		Pt(C ₂ I	H_4)Cl ₃]				
		, ,		ŕ		,	, -				
27.	Which	of the following	is not a gre	en sol	lvent	?					
	A)	H_2O		B)	(CCl ₄					
	C)	Ionic liquids		D)	I	Liquid	CO_2				
		•		ĺ		•					
28.	KCl c	rystallizes in the 1	NaCl type:	structu	ıre. I	f the ra	adius of K	⁺ ions	is138	pm a	and
	that of	Cl ion is 182 pm	n, what is tl	ne unit	t cell	dimen	sion of KO	Cl cry	stal?		
	A)	389 pm		B)		236 pn		•			
	C)	320 pm		D)	(640 pn	1				
	*	•				•					
29.	A con	pound of A and E	3 crystallize	es in a	cubi	ic lattic	e in whicl	h aton	ns of A	occi	upy
		rners of the cube			upy 1	the cer	ntres of each	ch of	the cul	be fac	ces.
	What	is the formula of t	his compor	and?							
	A)	A_3B B	AB_2		(C)	AB_3]	D)	AB	


30.	An ionic compound crystallizing in cubic system showed powder diffraction pattern in which the lines are indexed respectively to 111, 200, 220, 311, 222, 400, 331, etc planes. The lattice is									
	A)	Primitive cubic		B)	BCC					
	C)	FCC		D)	End centered					
31.	Due to	the presence of Sch	ottky defe	cts, the	density of the crystal					
	A)	Increases slightly		B)	Increases appreciably					
	C)	Decreases slightly		D)	Remains the same					
32.	Match	the following								
		Column I	Column	II						
		(a) Fluorite	(i) MgAl	₂ O ₄						
		(b) Antifluorite	(ii) BaTi	O ₃						
		(c) Spinel	(iii) CaF							
		(d) Perovskite	(iv) Na ₂ S							
	A .)	a: 1a:: a:: a::		D)						
	A) C)	a-i, b-ii, c-iv, d- iii a-ii, b-iii, c-iv, d- i		B) D)	a-iii, b-iv, c-i, d- ii a-iii, b-iv, c-ii, d- i					
	C)	a-11, 0-111, C-1V, U-1		D)	a-iii, b-iv, c-ii, u- i					
33.	Which		es of crys	tals are	usually piezoelectric?					
	A)	Perovskite		B)	Rutile					
	C)	Rock salt		D)	Zinc blende					
34.	if 9 m	following reaction oles of magnesium a , then after the reacti 9 moles of Mg ₃ N ₂ w 15 moles of Mg ₃ N ₂ w 6 moles of Mg ₃ N ₂ w 3 moles of Mg ₃ N ₂ w	nd 6 moles on vill be forn will be forn vill be forn	s of nitr ned rmed ned	➤ Mg ₃ N ₂ rogen are taken in a reaction					
35.	The n	umber of H ₃ O ⁺ ions	present in	10 mL	of 0.1 N HCl solution is					
	A)	6.022×10^{23}	•	B)	6.022×10^{22}					
	C)	6.022×10^{21}		D)	6.022×10^{20}					
36.	30. W	Then 100 mL of the ced is (All volumes	mixture i	s burnt	seous mixture of C ₃ H ₈ , CH ₄ and CO is in excess of O ₂ , the volume of CO ₂ he same conditions of temperature and					
	A)	160 mL		B)	170 mL					
	C)	180 mL		D)	100 mL					
	,			,						

- 37. Which of the following is a redox indicator?
 - A) Methyl orange
- B) Bromothymol blue
- C) N-phenylanthranilic acid
- D) Xylenol orange
- 38. Nickel is gravimetrically estimated as a complex with
 - A) Oxine


B) Dimethylglyoxime

C) EDTA


- D) Salycylaldemine
- 39. Which among the following is/are true?
 - A) Instrumental errors arise because no instrument is perfect and so it will introduce errors into our measurements
 - B) Method errors arise because no chemical procedure or reaction is perfect
 - C) Personal errors are very subtle errors that we personally introduce into the experiment.
 - D) All of the above
- 40. An analyst performed experiments and got the following results for the presence of lead in a water sample as 3.0, 2.9 and 3.1 ppm. The mean, median and standard deviation are respectively
 - A) 3.0, 3.0 and 0.1 ppm
- B) 3.0, 2.9 and 3.1 ppm
- C) 2.9,3.0 and 0.01 ppm
- D) None of the above
- 41. The increasing order of stability among the following carbocations is

- $A) \qquad I < II < III < IV$
- B) I < II < IV < III
- C) I < III < II < IV
- \overrightarrow{D}) IV < I < II < III
- 42. The reactive intermediate formed in the following reaction is

43. Which among the following is/are antiaromatic?

44. The major product formed in the following reaction is

HO.

D)

.CH₃

45. The major product formed in the following reaction is

.CH₃

CI

C)

46. Match the following reductions with suitable reagents

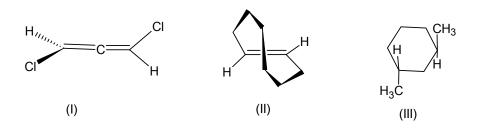
Name of reduction	Reagents
(a) Clemmensen reduction	(i) NH ₂ NH ₂ /KOH
(b) Birch reduction	(ii) Zn(Hg)/HCl
(c) Wolff- Kishner reduction	(iii) Aluminium
	isopropoxide
(d) MPV reduction	(iv) Li/NH ₃

- A) a-i, b-iii, c-iv, d- ii
- B) a-ii, b-iv, c-iii, d- i
- C) a-ii, b-iv, c-i, d-iii
- D) a-ii, b-iii, c-i, d- iv

- 47. Alkylation of a ketone at the α position can be done effectively by
 - A) Stork enamine reaction
- B) Friedel- Crafts alkylation
- C) Ullmann reaction
- D) Reformatsky reaction
- 48. The rearrangement occurring in the following reaction is of the type

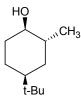
$$CH_3$$
 H^+ CH_3 CH_3

A) Beckmann

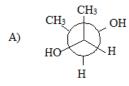

B) Wagner- Meerwin

C) Claisen

- D) Curtius
- 49. The major product obtained in the following reaction is


50. The major product obtained in the following reaction is

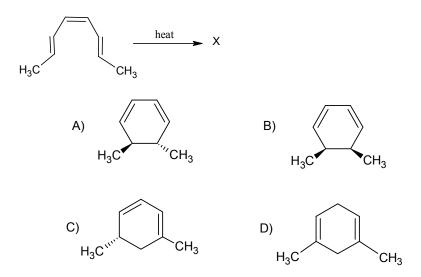
51. The following are chiral due to


D)

- A) I-axial, II- helical, III-Plane B)
- I-axial, II-Plane, III-centre
- C) I-plane, II-axial, III-centre
- I-axial, II-helical, III-centre

- A) All equatorial
- B) t-Bu & OH axial, methyl equatorial
- C) t-Bu equatorial, methyl & OH axial
- D) t-Bu & Methyl equatorial, OH axial

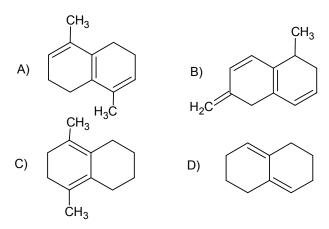
53. The most stable conformation of optically active butane-2,3-diol is



- 54. The absolute configuration of D-erythrose, HOH₂C CHO is
 - A) 2R, 3S
- B) 2R, 3R
- C) 2S, 3R
- D) 2S, 3S
- 55. The most efficient method of resolution of racemic mixture is
 - A) Mechanical separation
- B) Biochemical
- C) Chemical method
- D) Chiral column chromatography
- 56. Which of the following transition represents phosphorescence?
 - A) $S_o \longrightarrow S_1$
- B) $S_2 \longrightarrow S_1$
- C) $T_1 \longrightarrow S_0$
- D) $T_1 \longrightarrow T_0$
- 57. The major product X in the following photochemical reaction is

CH₂

- 58. Which of the following thermal sigmatropic rearrangement is impossible?


 A) [1,3]H B) [1,5]H C) [1,7]H D) [3,3]
 - / [] / [] -/ []]
- 59. Predict the major product X in the following reaction?

60. Which of the following cycloadditions occur thermally?

A)
$$\begin{array}{c} & & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

61. Which of the following compounds has maximum value for λ_{max} ?

- 62. The acetylenic C-H stretching vibration will occur in the region
 - A) 3300 cm^{-1}

B) 2950 cm⁻¹

C) 3080 cm⁻¹

- D) 2700 cm⁻¹
- 63. The number of signals in ¹H NMR spectrum of CH₃OCH₂CH₂CH₂OCH₃
 - A) 5
- B) 2
- C)
- D)

3

64. The compound $C_5H_{10}O$ showed strong absorption band near 1710 cm⁻¹. The off resonance decoupled ^{13}C NMR spectrum had δ 205(s), 38(d), 22(q), 17(q). The structure of the compound is

- B) H₃C CH₃
- C) H₃C CHO
- H_3C CH_3 CH_3
- 65. The mass spectrum of an alkyl halide showed M and M+2 peak intensities in the ratio 1: 1. The halogen present in the compound is
 - A) Fluorine
- B) Chlorine
- C) Bromine
- D) Iodine

- 66. The number of isoprene units in a diterpenoid is
 - A) 2
- B) 3
- C) 4
- D) 5
- 67. Which of the following statements is not correct in the case of papavarine?
 - A) It is an isoquinoline based alkaloid.
 - B) It is an optically active alkaloid.
 - C) It contains four methoxy groups.
 - D) It on oxidation with hot permanganate gives papaverinic acid.

- 68. Lipids which regulate physiological responses such as inflammation, blood pressure and pain
 - A) Prostaglandins
- B) Phospholipids
- C) Sphingolipids
- D) Triacylglycerols
- 69. Which of the following are the four bases present in RNA?
 - A) Adenine, guanine, cytosine, thymine.
 - B) Adenine, guanine, uracil, thymine.
 - C) Adenine, guanine, cytosine, uracil.
 - D) Guanine, cytosine, thymine, uracil
- 70. Aminoacid mixtures are separated by electrophoresis on the basis of their respective isoelectric points(pI). The pI of lysine is

$$NH_3^+$$
 $pK_a = 8.95$
 H_3N^+ $COOH_{pK_a} = 10.79$ $pK_a = 2.18$

- A) 5.56
- B) 6.48
- C) 7.31
- D) 9.87
- 71. The hyperconjugative effect of the group R in R-CH= CH_2 , where R is
 - CH₃-, CH₃CH₂-, or (CH₃)₂CH- follow the order
 - A) $CH_{3-} > CH_{3}CH_{2-} > (CH_{3})_{2}CH_{-}$
 - B) (CH3)2CH- > CH3CH2- > CH3-
 - C) CH3- > (CH3)2CH- > CH3CH2-
 - D) (CH3)2CH- > CH3- > CH3CH2-
- 72. Which of the following carbohydrate has β-glycosidic linkage?
 - A) Cellulose

B) α -amylose

C) Amylopectin

- D) Glycogen
- 73. Match the following

Column I	Column II
(a) Acrylonitrile	(i) Lucite
(b) Chloroprene	(ii) Orlon
(c) Methylmethacrylate	(iii) Nylon 6
(d) Caprolactam	(iv) Neoprene

- A) a-ii, b-i, c-iv, d-iii
- B) a-iii, b-i, c-iv, d-ii
- C) a-ii, b-iv, c-i, d-iii
- D) a-i, b-iv, c-iii, d-ii
- 74. Super glue is a polymer of
 - A) Styrene

- B) Methyl α-cyanoacrylate
- C) Vinyl acetate
- D) Isobutene

75.		ral rubber is	41 1 1	. 2 1 . 1:	`							
	A)	cis -poly(2-	-									
	B) C)	trans- poly(2 alternate cis	-			1 2 h	itadiana)					
	D)	cis- poly(1,3			neuryi-	1,5-00	itadiciie)					
	D)	cis- pory(1,2	-outaur	inc)								
76.	Whic	h of the follow	_		n polym							
	A)	Polystyrene	B)	Teflon	C	2)	Nylon 6-6	D)	PVC			
77.	Melm	nac is a copoly										
	A)	toluene-2,6-		-	-	e glyc	ol					
	B)	teriphtalic a										
	C)	adipic acid d			e							
	D)	melamine&	iormaia	enyae								
78.	chron	ixture of ber matographic s conents is of th Benzoic acid Benzamide Benzamide Ethylbenzoa	eparatio e order d < Ethy < Benzo < Ethylb	n by TLC lbenzoate < ic acid < Et enzoate < F	C. The Benzar hylbenz Benzoic	dist						
79.		Which among the following is/are used as carrier gas in GC? H ₂ , N ₂ , He, Ar										
	A)	H ₂ only		В) H	e &A	r only					
	C)	N ₂ only		D) A	ll the	four					
80.	Which of the following is expected to give a blood- red colouration during Lassignes test of nitrogen?											
	A)	Aniline	υ	В) U:	rea						
	C)	Thiourea		D) O	-tolui	dine					
81.	Whic theor	h of the follow y?	ing prop	perties of lig	ght cann	not be	explained b	y quant	ım			
	A)	Blackbody r	adiation	В) Pl	hotoe	lectric effect	t				
	C)	Diffraction		D) A	tomic	spectra					
82.		solubility prod oles/litre is	duct of a	sparingly s	oluble s	salt A	X_2 is 3.2x 1	0 ⁻¹¹ . Its	solubility			
	A)	$2x10^{-4}$	B)	$8x10^{-4}$	C)	$4x10^{-4}$	D)	5.6x10 ⁻⁴			
	11)	2/10	J)	OAIO		,	IAIU	D)	J.0X10			
83.		umber of plana										
	A)	One	B)	Two	\mathbf{C}	(1)	Three	D)	Four			

84.	According to variation princip function will be related to the A) $E \le E_0$ C) $E = E_0$		_	rial wave
85.	The screening constant for the A) 3.1 B)	2p electron i 2.8	n the nitrogen atom is C) 2.6	D) 3.5
86.	Bond order in CO is A) 2 B)	2.5	C) 1.5	D) 3
87.	Among the following orbitals A) $1\sigma_u$ B)	of diatomic n	nolecule, the bonding C) $1\pi_{\rm u}$	MO is D) $1\pi_g$
88.	The hybridisation involved in A) dsp ³ & d ² sp ³ C) d ² sp ³ & d ² sp ³	the molecule B) D)	s PF ₅ and BrF ₅ respect sp ³ d & sp ³ d ² sp ³ d ² & sp ³ d ²	tively are
89.	Which of the following molec i. NH ₃ ii. pyridine	cules are in C ₂ iii. H	1 0 1	О
	A) ii only C) iii only	B) D)	i & ii only ii,iii & iv only	
90.	The C _{4v} point group has eight point group and the number of respectively	_	-	
	A) 5 & 8 B)	8 & 5	C) 8 & 3	D) 8 & ∞
91.	Identify the Mulliken symbol at E C ₃ C ₂		ying irreducible representation S_6 σ_d	entation.
	1 1 -1		-1 1	
	A) A_{2u} B)	A_{1u}	C) A_{1g}	D) B_{2u}
92.	Which of the following molec i. CO ₂ ii. H ₂ O	tules are micro iii. CO	owave active? iv. N ₂	
	A) i & ii only C) ii & iii only	B) D)	i, ii & iii only i & iv only	
93.	All the three branches (P,Q &	R) are seen is	n the vibration- rotatio	onal spectra of
	the molecule A) CO B)	DCl	C) HCl	D) NO

94.	Moss	abauer spectrun	n of sod	lium nit	ropruss	ide con	sists of			
	A)	singlet			B)	doubl	let			
	C)	triplet			D)	multi	plet			
95.	Which	h among the fol N, ii. 160	llowing O,	nuclei a	are NM F,	R active iv.	e ⁴ C,	v. ³¹ F)	
	A) C)	i, ii, iii & v oi ii & iii only			B) D)		& v only f these			
96.		sr spectrum of a is the spin of the			single	magnet	ic nucleus	s is spl	it into	6 lines.
	A)	5	B)	3/2		C)	5/2		D)	3
97.		m atom is twice ium atom is Half that of h Four times th Twice that of Same as that	ydroger at of hy hydrog	n drogen en	hydrog	gen mol	ecule. At	25°C t	the aver	rage K.E.
98.	The ra	atio between the	e most p B)	orobable 2	e veloci	ty of H C)	2 at 50K a 4	ınd tha	t of O ₂	at 800K 1/4
99.		atio of the rates cular masses is 1:16	of diffu	usion of	`two ga	ses P &	2 Q is 4 : 1 1 : 2	l, the r	ratio of D)	their 1:8
100.	,	ype of liquid cry Cholestic Smectic	,		CD scre B) D)	ens is Nema	ntic		D)	1.0
101.	 C) Smectic D) Lyotropic An incorrect statement about work is A) It is a path dependent function B) An ideal gas expanding into vacuum does maximum work C) Expansion work against external pressure (P_{ext}) is P_{ext}dv, where dv is infinitesimal change in volume D) Expansion work in an isothermal reversible process for <i>n</i> moles of an ideal gas is, -nRTln^{V1}/_{V2} (V₁ and V₂are the initial &final volumes) 									

102.	2. Which colligative property is most suitable for the determination of molecular mass of a protein?								
	A)	Osmotic pres	sure						
	B)	Elevation in		noint					
	C)	Depression in							
	D)	Relative low		• 1		ire			
	D)	Troidit ve 10 w	cring o	i vapoui	ргевые	110			
103.	The Jo	oule – Thomso							
	A)	$\left(\frac{\partial T}{\partial P}\right)_{S}$	B)	$\left(\frac{\partial P}{\partial T}\right)_{z}$		C)	$\left(\frac{\partial P}{\partial T}\right)_{-1}$	D)	$\left(\frac{\partial T}{\partial P}\right)_{-1}$
		(01)5		(01)5			(01) H		(0P)H
104.		hor is often use					eight determ	ination be	cause
	A)	It is a solvent			nic sub	stances			
	B)	It is readily a	vailable	e					
	C)			:	4				
	D)	It has high cr	yoscop	ic consta	ını				
105.	If ∆ G	o is zero for a r	eaction	, then					
	A)	AH = 0				۸S =			
	C)	$K_{eqlm} = 1$			D)	K_{eqlm}	=0		
106.		ystem containing er of phases an						f compone	ents,
		C P	F						
	A)	2 2	2						
		2 3	1						
	B) C)	2 2 2 3 3 3 1 2	2						
	D)	1 2	1						
107.		w many ways c particle follow					in five state	es of an en	ergy level
	A)	30	B)	20		C)	15	D)	10
108.	In a se	econd order rea	action,						
		2 <i>A</i>	-	→ Pro					
	if the	concentration of	of A is	doubled,	the ha	.lf- life c	of the reaction	n will be	
	A)	Halved			B)	Unch	anged		
	C)	Doubled			D)	Quad	rupled		
109.	For a consta	chemical react	ion whi	ch one o	f the fo	ollowing	g plots will b	e linear (1	k – rate
	A)	kvs T			B)	log k	vs T		
	C)	log k vs log T			Ď)		vs 1/T		

	A)	$k_r = \frac{h}{kT}K^*$		B)	$k_r =$	$\frac{kT}{h}K^*$		
	C)	$k_r = \frac{kT}{h} K^* e^{-E}$	Z*/RT	D)	$k_r =$	$\frac{kT}{h}K^*e^{-\Delta H^*}$	/RT	
111.	The c	ne reaction, $A \rightarrow$ order of the reacti	on is	•				
	A)	Zero	B) One	•	C)	Two	D)	Three
112.	Whic A) B) C) D)	h of the followin It involves che It involves high It involves mul It is irreversible	mical bond h heat of ad lti-layer ads	ing betwo			-	
113.	Acco	rding to Langmu	ir adsorptio	n isotheri	n			
	A)	Plot of $\frac{p}{x/m}$ ver						
	B)	Plot of $\frac{p}{x/m}$ ver						
	C)	Plot of $\frac{1}{x/m}$ ver	sus $1/p$ is 1	inear				

The expression for the rate constant (k_r) according to the absolute reaction rate

theory is (K^*) is the equilibrium constant for the activation)

114. Brownian movement is due to

D)

110.

- A) Temperature fluctuation in the dispersion medium
- B) Electrostatic interaction between dispersed phase and dispersion medium
- C) Unbalanced impact of molecules of dispersion medium on dispersed phase
- D) Convection current
- 115. Which among the following statements is not correct?

Plot of $\frac{1}{x/m}$ versus p is linear

- A) All solid catalysts follow heterogeneous catalytisis.
- B) Heterogeneous catalysts function by providing an alternate pathway for the reaction in which the energy of activation is low.
- C) Efficiency of a solid catalyst depends on surface area.
- D) A catalyst may be deactivated by heating to a high temperature.
- 116. The relationship between mean ionic activity coefficient for Ca₃(PO₄)₂ and its ionic activity coefficients is given by

A)
$$\gamma_{\pm} = \gamma_{+}^{3} \gamma_{-}^{2}$$

B)
$$\gamma_{\pm} = \gamma_{+}^{2} \gamma_{-}^{3}$$

C)
$$\gamma_{\pm}^5 = \gamma_+^3 \gamma_-^2$$

D)
$$\gamma_{\pm}^5 = \gamma_+^2 \gamma_-^3$$

117.				Ω^{-1} cm ² mol ⁻¹ , and $\lambda_{OH}^0 = 197.6$			eiation is	
	A)	0.0608	B)	0.0424	C)	0.848	D)	0.0212
118.	Pt/Li(s	s) / Li ⁺ // F ⁻ / i	$F_2(g)/Pt$	bbs free energy $??$ $Li^{+}/Li = -3.05$		e for the cell	l reaction	of the cell
	A)	-1142 kJ		B)	+1142	2 kJ		
	C)	-347 kJ		D)	+347	kJ		
119.	The st each:	andard potenti	al at 298	K for the follo	owing h	alf reactions	are given	against
		Zn ²⁺ (aq) +2e =	Zn(s)	- 0.7	62 V		
		Cr ³⁺ (ag)	+3e =	Cr(s) Al(s)	- 0.74	10 V		
		Al ³⁺ (aq)	+3e =	Al(s)	-1.66	V		
		Au ³⁺ (aq)	+3e =	Au(s)	+ 1.4	0 V		
	Which A)	is the most po Zn	owerful 1 B)	reducing agent? Au	? C)	Cr	D)	Al
120.			le for mo	reference electreasuring the pH B) D)	I of a so Calon		;	ent of