

17203 120 MINUTES

1.	Consider List I (chemical compound) and List II (function) and match them										
	<u>List</u>			<u>List</u>							
	a.	Chloramph	enicol			e electron do		II			
	b.	Reserpine				drial inhibito					
	c.	Rotenone				hloroplastic p	rotein				
	d.	Ascorbic ac	eid	4. A	Intihype	rtensive drug					
	Choo	se the correct	answer c	ode:							
	A)	a-1; b-3; c-	2; d-4	B)	a-3;	b-4; c-2; d-1					
	C)	a-2; b-3; c-	4; d-1	D)	a-4;	b-2; c-3; d-1					
		ng the course ollowing meta	-		and fas	ting, glucose	is synthes	sized from one	e of		
	A)	Glycogene	sis	B)	Glyc	olysis					
	C)	Gluconeog	enesis	D)	Fern	nentation					
		Temperatur Oxygen is	l events in on of indo re generat converted	appropriate oles and sulph ion to water	order. nur comp	_		ps of the resp	ective		
	A)	1,2,3,4	B)	4,3,2,1	C)	4,2,1,3	D)	4,1,2,3			
4.		NAD(P)H 2. NAD(P)H dehydrogenase is sensitive to rotenone 3. Alternate oxidase supports cyanide resistant respiratory pathway									
	2. 3. 4.	NAD(P)H Alternate o	xidase suj	pports cyanid	e resista	nt respiratory	pathway				
	3.	NAD(P)H Alternate o Terminal o	xidase suj xidase is	oports cyanid sensitive to p	e resista otassiun	nt respiratory n cyanide					
	3. 4.	NAD(P)H Alternate o	xidase sup xidase is are correc	oports cyanid sensitive to p	e resista ootassiun 2,3,4	nt respiratory					
5.	3. 4. A) C)	NAD(P)H Alternate of Terminal of 1,2,3 only a	xidase sup xidase is are correct are correct	oports cyanid sensitive to p t B) t D)	e resista ootassiur 2,3,4 All a	nt respiratory n cyanide only are cornect	rect	ıl component?	,		

6.	What	is meant by lichenometry?									
	A)	Study regarding the age of	lichens.								
	B)			urfaces based on the size of lichen thalli.							
	Ć)	•		he period in which lichens evolved.							
	D)	Study regarding the succes	sion of v	various forms of lichens							
7.	The p	H indicator in the litmus test	is a dye	extracted from the lichen.							
	A)	Umbilicaria esculenta	B)	Parmelia saxatilis							
	C)	Roccella tinctoria	D)	Xanthoria parietina							
8.	State	whether these statements are	true or f	false.							
	1.	The acrocarpous mosses ar	e genera	lly those upright mosses with terminal sporangia.							
	2.	Pleurocarpous mosses produce their sporangia on short, specialized lateral branches									
		or buds and typically are prostrate.									
	3. Cladocarpous are those mosses that bear sporophytes terminally on short, lateral branches.										
	A)	1 and 2 only are correct	B)	2 and 3 only are correct							
	C)	1 and 3 only are correct	D)	All are correct							
9.	Obser	ve the following definitions	and choo	ose the correct ones?							
	1.										
		shell and consisting the infective form of a virus.									
	2. Viroids consist solely of short strands of circular, single-stranded RNA without										
	protein coats.										
	3.	A retrovirus is an infectiou	s agent c	composed entirely of protein material, called PrP.							
	A)	1 and 2 only are correct	B)	2 and 3 only are correct							
	C)	1 and 3 only are correct	D)	All are correct							
10.	Motal	n the resin and the source pla	nt								
10.		Dammar gum	l.	Ferula gummosa,							
	p.	Frankincense	m.	Boswellia sacra,							
	q. r.	Galbanum	n.	Members of Dipterocarpaceae							
	S.	Hashish	0.	Cannabis indica,							
	з.	Hasinsii	0.	Camadis maica,							
	A)	p-l,q-n, r-m, s-o	B)	p-l, q-o, r-n. s-m							
	C)	p-n, q-m, r-l, s-o	D)	p-n, q-l, r-m, s-o							
11.		the types of electron source fent physical principles.	or transr	mission electron microscope, operating on							
	A)	Thermionic emission	B)	Schottky emission							
	C)	Field emission	D)	All of the above							
	,		,								

12.	p) Aq) Cr) C	h the dye with the cridine orange armine Coomassie blue Crystal violet,	l. m. n.	is an inte	n cationic dye						
	A) C)	p-m, q-l, r-o, s- p-o, q-n, r-m, s-		B) D)		q-o, r-l, s-m q-o ,r-n, s-m					
13.	Which 1. 2. 3. 4.	h of these sentence A single molect thousands of ta The efficiency medicines at lo An abzyme is u transition state An abzyme is t make antibodie	ule of an ar rget molect of abzyme wer costs the sed to lowe to be possily ypically art s that bind	ntibody-e nles technolog han are per the act ble and the ificially in	nzyme, gy coul ossible ivation ne prod made an	d permit treatneted today. energy of a react to be formed is made by lat resembles the	nents wit action all ed. having th	h smaller do	oses of he		
	A) C)	1,2 and 3 only 1,3 and 4 only	are correct		2,3 8	and 4 only are or correct	correct				
14.	Name A) C)	e the post-translat Phosphorylatio Methylation		Fications B) D)	Acet	calmodulin can ylation of the above	undergo).			
15.	Identi	ify the plant horm		as anti s berellin	enesce C)	nce hormone. Cytokinin	D)	ABA			
16.	Sugge 1. 2. 3.	 0, 1, 2, 3, etc. The occurrence of one event does not affect the probability that a second event will occur. That is, events occur independently. 									
	A) C)	Binomial distribution		B) D)		son distributior tribution	1				

17.	Which is the technique utilised to estimate the methylation of DNA? A) Ion-mobility spectrometry									
	A) B)	Mass spectro		metry						
	C)	Neutron tripl	-	pectrom	etry					
	D)	Optical spectro		1	J					
18.		was the earlier arces (IUCN)? International							ature and Natural	
	B) C) D)	International International International	Union :	for Cons for Prote	servation of	on of Na of Natur	ature	ioeiv)		
10	ŕ						1	1 1	XX/1 ' 4 1 1	
19.	Gamma diversity (γ -diversity) is the total species diversity in a landscape. Who introduce this terminology?									
	A)) Shannon B) S		Simps	son	C)	Odum	D)	Whittaker	
20.	 Identify the correct statements related to Biomagnification. 1. Non biodegradable 2. Food chain energetics 3. Persistent organic pollutant 									
	A) C)	1 and 2 only 1 and 3 only			B) D)		3 only are correct	orrect		
21.	Jacobsen Syndrome is due to:									
	A) C)	Deletion Translocation	1		B) D)	Dupl: Inver	ication sion			
22.	Pick (A) B) C) D)	out the biologic Immunity aga Down-regula Up-regulation All of the abo	ainst virtion of ger	ruses or genes			ng.			
23.		termine the var ent places, sugg Chi square		-		tistical t	_	sect colle	cted from six	
	C)	F test			D)		ession analys	is		
24.	Polyg A) C)	enic traits in cr QTL mappir Tandem anal	ng	ı be iden	tified b B) D)	Clust	er analysis e mapping			
	<i>C)</i>	Tuncin unu	<i>,</i> 010		D)	Sen	. mapping			

25.	The be A) B) C) D)	ending of plants towards unilated Polar transport of auxin Auxin degradation in light Auxin synthesis in shaded are Lateral distribution of auxin to	ea							
26.	Among A) C)	g the following, which is not a No mutation No natural selection	n assun B) D)	nption of Hardy Weinberg rule? Random mating Small population size						
27.		ow are three mechanism of exon shuffling of which one is proven to be important in a evolution of rice and other grass species, identify the same. by the usage of helitrons by Long-terminal repeat (LTR) retrotransposons by illegitimate recombination by the long interspersed element (LINE) -1 mediated 3' transduction hromosome, which is associated with chronic myelogenous leukemia is as a result of								
28.	Ph chr A) B) C) D)	chromosome, which is associated with chronic myelogenous leukemia is as a result of A translocation between chromosome 22 and chromosome 8. A translocation between chromosome 21 and chromosome 9. A translocation between chromosome 22 and chromosome 9. A translocation between chromosome 21 and chromosome 8.								
29.	enzym	The DNA segments may be mapped by locating the restriction sites through restriction enzymes, called restriction mapping. When this is extended to complete chromosome, it i called:								
	A) C)	Chromosome sketching Chromosome reading	B) D)	Chromosome walking Chromosome framing						
30.	Acroso A) C)	ome of spermatozoon contains Protease Acid phosphatase	: B) D)	Hyaluronidase All of the above						
31.	Match p. q. r.	the test with its appropriate pu Immunodiffusion test Immuno-electrophoresis Radial immuno diffusion	urpose. l. m. n.	to measure antigen or antibody concentration to separate several antigens to detect antigen or antibody in samples						
	A) C)	p-l, q-m, r-n p-n, q-m, r-l	B) D)	p-m, q-n, r-l p-l, q-n, r-m						

	p) Campilotro	pous	1.	surfa	e is curved, micropyle is directed towards the ce of origin, chalaza is situated at right angles to unicle				
	q) Amphitrope	ous	m.	Nuce	es to the funiculus (eg.Ranunculus)				
	r) Hemitropou	IS	n.	Ovul	e curvature is more prominent and embryo sac is e shoe shaped				
	s) Circinotrop	ous	0.		cle is very long and form a complete circle and the ovule				
		m, r-n, s-o		B)					
	C) p-l, q-1	n, r-m, s-o		D)	p-l, q-o, r-m, s-n				
33.	Compare the a	amoeboid tap	etum w	ith the a	appropriate characteristic feature.				
	p) Sagitaria ty	_	tum bre go mei	aks the wall when microspore mother cells osis.					
	q) Butomus ty		ation o	f periplasmodium occurs when tetrads are					
	r) Sparganium	type n.	multi	nucleat					
	s) Triglochin type o.			tal cells ed.	loose their wall when the microspore tetrads are				
	A) p-l, q-1	m, r-n, s-o		B)	p-m, q-n, r-o, s-l				
	C) $p-1, q-1$	n, r-m, s-o		D)	p-o, q-m, r-n, s-l				
34.	The viral system A) Retrov		eliver a t	herapeı B)	atic gene to a specified cell type in gene therapy. Adenovirus				
	,	s simplex viru	18	D)	All of the above				
	, 1	-		,					
35.	What are arbu A) The sp	scules? ore producin	a etrueti	ıros					
	_	_	-		the fungus and the host				
	C) Propag	gating structu	res		_				
	D) Structures formed for defensive purpose								
36.	What is fuelge	en reaction?							
					form red product				
					form red product form red product				
	· -				o form red product				
37.		_			ther forms of radiation, not penetrating: These are				
	the properties	of which typ	e of radi		Beta				
	A) Alpha C) Gamm	ıa		B) D)	All of the above				
	· ·								

Compare the ovule with the appropriate characteristic feature.

32.

38.	Which one forms the basis for scintillation counting of radioactivity?										
	A)	Methods based upon gas ic	onization								
	B)	Methods based upon excita									
	C)	Methods based upon expos	sure of pl	hotographic emulsions							
	D) Methods based upon photo energy										
39.	Deter throu	<u>•</u>	ure of pr	oteins that cannot be crystallised is achieved							
	A)	X ray crystallography	B)	NMR							
	C)	Circular dichroism	D)	Mass spectrometry							
40.41.42.		h is the predominant auxin beudomonas savastanoi and A		sis pathway in various pathogenic bacteria, such erium?							
	A)	IPA Pathway	B)	TAM pathway							
	C)	IAN pathway	D)	IAM pathway							
41.	Pick o	out a non antioxidant in plant	ts from tl	ne following:							
	A)	Vit C	B)	Alpha tocopherol							
	C)	Carotenoids	D)	Cysteine							
42.	Pick o	out a process not associated v	with enzy	me purification.							
	A) Ammonium sulphate precipitation										
	B)										
	C)	Western blotting									
	D)	Dialysis									
39.40.41.	The e	volution of genes and the pro-	oteins ma	ainly occur due to:							
	A)	Point mutation	B)	Chromosomal aberrations							
	C)	Gene recombinations	D)	Gene duplication and divergence							
40. 41. 42. 43. 44.	The CSIR Institute, Centre for Medicinal and Aromatic Plants, is located at										
	A)	Kanpur B) Luc	know	C) Chandigarh D) Kolkata							
45.	Nitro	gen fixation in woody trees i	s accomp	olished through the microorganism.							
	A)	Rhizobium	B)	Azotobacter							
	C)	Frankia	D)	Azospirillum							
46.		e different subunits of G protylate cyclase?	tein, this	is responsible for activation of							
	A)	Alpha subunit	B)	Beta subunit							
	C)	Gamma subunit	Ď)	Delta subunit							

47.		rve the table showing lains stable DNA?	DNA con	npositi	on from 3 different species. Which species
		Organism	A:T		C:G
		(a)	25		75
		(b)	50		50
		(c)	75		25
	A)	Organism (b)		B)	Not predictable using this data
	C)	Organism (a)		D)	Organism (c)
48.	these				elated decisions, typically because protecting other species that make up the ecological
	A)	Indicator species		B)	Keystone species
	C)	Flagship species		D)	Umbrella species
49.		ome characterized by cored as:	oniferous	s trees o	consisting mostly of pines, spruces and larches is
	A)	Pine forests		B)	Temperate forests
	C)	Temperate deciduou	s forests	D)	Boreal forests
50.	bacte unres	rial cell membrane, all	owing in	organio	s a result of increasing the permeability of the emonovalent cations (e.g. Na ⁺) to travel through gradient between the cytoplasm and the Actinomycin Nicin
51.		th of these viruses is us action?	sed as a p	esticid	e for crops infested by insects susceptible to
	A)	Cauliflower mosaic	virus	B)	Cucumber mosaic virus
	C)	Rice tungro virus		D)	Nuclear polyhedrosis virus
52.					r another in an exon of a gene coding for a sequence is not modified is referred as: Gene duplication
	C)	Synonymous mutation	one	D)	Non-synonymous mutations
	C)	Synonymous mutatr	0118	D)	Non-synonymous mutations
53.	Sigm A) B) C) D)	a factor in RNA polyn Affecting elongation Affecting initiation Affecting both initia Affecting termination	only only tion and		
54.		<u> </u>			somal binding site in bacterial and archaeal B bases upstream of the start codon AUG. Hogness box Shine-Dalgarno box

55.		ructural and fu						le with a mass of 40 kDa and the ribosome in bacteria and			
	A)	miRNA	B)	rRNA		C)	5S RNA	D)	tRNA		
56.	Which A) B) C) D)	of the pair is Alternate oxi Ascorbate pe Catalase-Det Guaiacol per	dase – C roxidas oxify H	Cyanide e-Detox ydrogen	resista ify Hyd peroxi	nt respii Irogen p de	ratory pathway peroxide	y			
57.	The gene whose phenotype is masked by the expression of an allele at a separate locus, in										
	an epistasis event.										
	A)	Jumping gen			B)	-	atic gene				
	C)	Supplementa	ry gene		D)	Hypo	static gene				
58.	3. An ecogeographical rule which states that within a broadly distributed taxonomic clade, populations and species of larger size are found in colder environments, and species of smaller size are found in warmer regions.										
	A)				B)	_					
	C)	Bergman's ru	ıle		D)	Dollo	's Law				
59.	A secondary messenger molecule which is soluble and diffuses through the cell.										
57.	A)	1,2 diacyl gly	-		B)		Cyclic AMP	in ough (ine con.		
	C)	Inositol 1,4,5	,	,	D)	Cyclin	•				
60.	to inju	-	e plant	is under	attack	by patl	nogens such a	s bacter	al plants in respon ia or fungi and al Bardystanin		
61.	Amor A) C)	ng the pteridopl Marsilea and Equisetum ar	Equise	tum	we mult B) D)	Lycop	antherozoids? podium and Se inella and Equ	elaginell	a		
62.	Pick of A) B)	conditions.	chambe	r used to	study	the plan	nt responses to		ed carbondioxide		
	C)	radiations.			·	-	-		used for studying		

An enclosed chamber with controlled environmental conditions used for growing

interactions between plants and the environment.

D)

plants.

	_	urities	l. Inhibitor of ethylene						
-	-	urities	m. Polyvinylpolypyrrolidone						
•			n. Inhibitor of alternate oxidase						
, ,		NPA)	o. Auxin inhibitor						
Δ)	n-n a-o r-m s-1	R)	p-m, q-n, r-o, s-l						
			p-m, q-l, r-n, s-o						
C)	p-m, q-n, 1-1, s-0	D)	p-m, q-1 ,1-n, s-0						
	-		ritical biological processes of DNA recombination						
A)	G-quadrets	B)	Triplex DNA						
C)	Hairpin DNA	D)	Cruciform DNA						
Ident	ify the enzyme which plays	a critical	l role in regulating the total rate of DNA synthesis						
so that DNA to cell mass is maintained at a constant ratio during cell division and									
		D)	Dihanyalastida nadyatasa						
		*	Ribonucleotide reductase						
C)	DNA polymerase	D)	DNA helicase						
Match the following with appropriate combination.									
p)		1.	Southern Blot						
q)		m.	Frederick Sanger						
r)	DNA sequencing	n.	Ramachandran plot						
s)	RNA transfer	0.	Northern Blot						
A)	p-n, q-l, r-m, s-o	B)	p-m, q-n, r-o, s-l						
C)	p-m, q-n, r-l, s-o	D)	p-m, q-l, r-n, s-o						
Phage	otrophs are:								
_	-	ad organ	ic matter						
B)		_							
									
Ď)									
Choo	se the correct match								
n)	Model organism	1.	Ustilago maydis						
			Neurospora crassa						
			Cryptococcus neoformans						
			Claviceps purpurea						
5)	Elleupsulated youst	0.							
A)	p-n, q-l, r-m, s-o	B)	p-m, q-n, r-o, s-l						
C)	p-m, q-n, r-l, s-o	D)	p-m, q-l, r-o, s-n						
	p) Us q) SH r) Ag s) 1-1 A) C) The s and r A) C) Ident so th repair A) C) Matc p) q) r) s) A) C) Phage A) B) C) Choo p) q) r) s) A)	q) SHAM r) AgNo ₃ s) 1-N-Naphthylphthalamic acid (A) p-n, q-o, r-m, s-l C) p-m, q-n, r-l, s-o The structure of DNA important to and repair mutations that occur in A) G-quadrets C) Hairpin DNA Identify the enzyme which plays so that DNA to cell mass is mairepair. A) Adenosine deaminase C) DNA polymerase Match the following with appropricate polymerase On protein structure q) DNA transfer A) p-n, q-l, r-m, s-o Phagotrophs are: A) Organisms that feed on de B) Organisms that absorb disconnected polymerase C) Organisms that synthesise Choose the correct match p) Model organism q) Smut disease in maize r) Ergot fungus s) Encapsulated yeast A) p-n, q-l, r-m, s-o	p) Used as a fining to extract impurities q) SHAM r) AgNo ₃ s) 1-N-Naphthylphthalamic acid (NPA) A) p-n, q-o, r-m, s-l B) C) p-m, q-n, r-l, s-o D) The structure of DNA important for the crand repair mutations that occur in the cell. A) G-quadrets B) C) Hairpin DNA D) Identify the enzyme which plays a critical so that DNA to cell mass is maintained repair. A) Adenosine deaminase B) C) DNA polymerase D) Match the following with appropriate comp) Protein structure l. q) DNA transfer m. r) DNA sequencing n. s) RNA transfer o. A) p-n, q-l, r-m, s-o B) C) p-m, q-n, r-l, s-o D) Phagotrophs are: A) Organisms that feed on dead organ B) Organisms that absorb dissolved on C) Organisms that ingest other organism D) Organisms that synthesise food from Choose the correct match p) Model organism l. q) Smut disease in maize m. r) Ergot fungus n. s) Encapsulated yeast o.						

	A) Antheridiophores and archegoniophores are present in pteridophytes										
	B)	Origin of seed habit can be			* •						
	C)	Pteridophyte gametophyte h	-		· · · · · · · · · · · · · · · · · · ·						
	D)	In gymnosperms female gar	netopny	te is fre	e-living						
70.		feature makes sexual reprodu			yra more advanced?						
	A)	Morphologically distinct sea	_	S							
	B)	Similar size of motile sex of	_								
	C)	Different size of motile sex	_								
	D)	Physiologically differentiate	ed sex o	rgans							
71.		ss in which organisms diversiorms is referred to as:	fy rapid	ly from	an ancestral species into a multitude of						
	A)	Adaptive radiation	B)	Natur	al selection						
	C)	Convergent evolution	D)	Non-r	andom evolution						
72.	The m	najor tribes of the Waynad trib	oal popu	ılation i	nclude:						
	A)	Koragars and Maradis	B)	Paniy	ars and Kurichiar						
	C)	Mudugar and Kurumbar	D)	Malay	yar, Uralis						
73.	The k	ey element(s)for the optical of	-	-	-						
	1)	occupy different locations in the diffraction plane at the back aperture of the objective lens									
	2)	advance the phase and redu maximize differences in am		-	e of the surround light, in order to the object and background in the image						
	Which	plane. n of these statements is/are co	rrect?								
	A)	1 is correct									
	B)	2 is correct									
	C)	Both 1 and 2 are correct									
	D)	Both 1 and 2 are incorrect									
74.	Widely used computer programs used in bioinformatics for multiple sequence alignment with command line interface.										
	A)	BLAST	B)	Targe							
	C)	CLUSTALW	D)	Prime	er Express						
75.		n of the following terms best on their common ancestor?	describe	s the ch	aracter shared by a set of species but not						
	A)	Cladogenesis	B)	Paedo	omorphosis						
	C)	Allometric growth	D)	Homo	oplasy						
76.	Which	n of the following is NOT a g	reenhou	ise gas?							
	A)	Hydrofluoro carbons		B)	Nitrogen oxides						
	C)	Sulphur hexafluoride		D)	Sulphur dioxide						

69.

Pick out the correct statement.

77.	Ident	ify the incorre	ect defini	tions.						
	1)	Synandrous	s- Stame	n fused a	at anthe	ers and f	ree at filamer	nts		
	2)	Syngenesio	ous - And	lroecium	n with t	ınited ar	nthers			
	3)	Polyadelph	ous- Ant	hers uni	ted into	three o	r more group	S		
	4)	Obdiploste	monous-	- Stamen	nin two	whorls,	the outer alte	ernating v	with the petals	
	A)	1 and 3only	are inco	orrect	B)	2 and	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	correct		
	C)	3 and 4only	are inco	orrect	D)	1 and	4 only are in	correct		
78.							ith branching	axes on	which kidney-	
	-	ed sporangia a	ire arrang	ged in la	-		1 11			
	A)	Cooksonia			B)		rophyllum			
	C)	Rhynia			D)	Willia	amsonia			
79.	-	•	r machin	ne that u				A into tw	vo single stran	ds.
	A)	Metasome			B)	Helic				
	C)	Replisome			D)	Splic	eosome			
80.		•	-				_	-	ment of the ori	ginal
		rial and the fil	_	he origin	-	-		S.		
	A)	Compression	on		B)		factions			
	C)	Casts			D)	Mine	ralisations			
81.	Pick	out the incorr	ect matcl	h.						
	1)	Leaf spot o	_		-		homonas cam	-		
	2)	Red rust of			-	•	aleuros vires			
	3)	False smut	-	1	-		leia vastatrix			
	4)	Coffee rust			-	Ustile	aginoidea vir	ens		
	A)	1 and 2	B)	3 and 4	4	C)	1 and 3	D)	2 and 3	
82.	Com	plex of protein	ns is four	nd in the	outer	mitocho	ndrial membr	ane. It al	lows movemen	nt of
	prote	ins through th	is barrie	r and int	to the ir	nter mer	nbrane space	of the mi	tochondrion.	
	A)	F_0 & F_1 Cor	nplexes		B)	TOM	Complexes			
	C)	GERL Con	nplexes		D)	Toc d	& Tic Comple	exes		
83.	Outa	rowths of the	thallus s	urfoco o	and ara	aartiaat	od nenolly w	ith a aalu	mnar structure	o ond
03.	_	isting of both					•			z, and
	A)	Cephalodia		Isidia		C)	Soredia	D)	Soralia	
84.	Sri C	hitra Tirunal 1	Institute	for Med	ical Sci	iences is	s funded by w	hich one	of the followi	ng?
	A)	Dept. of Sc					- J			U
	B)	Dept. of Bi								
	Ć)	Council for		~.	ndustria	al Resea	rch			
	Ď)	Govt. of Ke								

85.		the journal pu		-		•	Sciences, Bar al of Bioscien	-		
	A) C)	Indian Journa Indian Biolog			B) D)		at of Bioscien nt Advances i		es	
	C)	maran Brotog	Sicui Sc	ichees	D)	Curro	in Tiavances i	ii belelle	CS	
86.		mically encode g development.		oding R	NAs th	at help	regulate gene	expressi	on, particularly	
	A)	miRNAs	B)	siRN <i>A</i>	As	C)	dsRNAs	D)	ssRNAs	
87.	Distri A)	bution of plant Circumtropic	-	coverin	g tropic B)	cal regio		tinents is	referred to as:	
	C)	Neotropical			D)	Palae	otropical			
88.	Flora	come into forc		n Interna				Species	of Wild Fauna and	l
	A)	1 July 1972			B)	1 July				
	C)	1 July 1975			D)	1 July	1974			
89.		ompound whics a source of m		-	phorus	store, a	s an energy ho	ouse, as a	a source of cations	,
	A)	Ptyalin	B)	Phytin	1	C)	Phytol	D)	Phytoline	
00	Canala	of = 11 - = = = = = = = = = = = = = = = =	سناه مسنه	L	مينا المست		on 4ho no11on!			
90.	A)	of pollen conta Melissopalyn		noney a	ana, m p B)	-	ar, the polien nopalynology	s source.		
	C)	Cretinopalyn			D)		alynology			
	-,		87		-,	P	, 6,			
91.				B and N	NodC a	re giver	n below, arran	ge them	in the order of	
		sequential func		.441	4 1		- of o fotter on	سنمطم اب		
	1. 2.	•		•			n of a fatty ac	•	ne monomers.	
	3.	_		-					from the terminal	
		non-reducing	sugar.							
	A)	1, 2, 3	B)	2,3,1		C)	1,3,2	D)	3,2,1	
	/	-, -, -	-/	_,_,_		-,	-,-,-	_,	-,-,-	
92.		the following,	•					_	•	
	A)					~	the form of flu		ce	
	B)						orophyll mole			
	C) D)	Energy utilise				rgy m t	the form of he	eat		
	D)	Energy atms	cu for p		moury					
93.		v are listed a fe		nents re	lated to	phytoc	hrome. Estab	lish whet	ther these	
		nents are true o		المالة المالة	14: .	fou	:1 DIIXA 4	ا مامىيما	OLIVE	
	1. 2.	phyA:Type I	s is enco	ded by a	a munig	gene iai	nily: PHYA t	nrougn P	НІЕ.	
	3.	phyB,C,D,E:	Type 2							
	4.	phyA & phyl			oles					
	٨١	1 2 2 4	o ond 4	in falar	D)	2 2 4	l ana tura an 1	1 ia fala-		
	A) C)	1, 2, 3 are tru 1, 3, 4 are tru					are true and are true and			
	\sim)	1, 5, 1 arc arc	.c and 2	15 14150	ט)	1, 4, 7	are true and	J 15 1415C	•	

94.	Below are listed different physiological roles of Pentose Phosphate Pathway (PPP). Find out whether these statements are true or false.									
	1.	In nongreen plastids, such as dark, PPP supply NADPH for		-		-		_		
	2.	nitrogen assimilation. PPP produces ribose-5-phosphate, a precursor of the ribose and deoxyribose needed in the synthesis of RNA and DNA, respectively. An intermediate of PPP, the four-carbon erythrose-4-phosphate, combines with PEP in the initial reaction that produces plant phenolic compounds, including the aromatic amino acids and the precursors of lignin, flavonoids, and phytoalexins								
	3.									
	4.	During the early stages of greening, before leaf tissues become fully photoautotrophic, the PPP is thought to be involved in generating Calvin cycle intermediates.								
	A) C)	1, 2 are true and 3, 4 are false All are true	B) D)	1, 2 ar All are		and 3,4 are	true			
95.	Which	h is the Na ⁺ transporting protein SOS 1 B) AtNHX		ted on t	he tono	pplast? NSCC	D)		AtHKT1	
96.	Comp with i	pare the algae/algal product with	ı the m	ost app	ropriate	e economic	importan	ice a	associated	
	p)	Coralline algae		1.	Ice cr	eam/Salad c	ream			
	q)	Cyanophycean members		m.	Cosm					
	r)	Carragenin		n.		ng agent on	surface (of sc	oil	
	s)	Algin		0.		g the soil				
	A)		B)	-	q-n, r-o					
	C)	p-m, q-n, r-l, s-o	D)	p-o, q	p-o, q-n, r-m, s-l					
97.	7. Identify the correct and incorrect statements regarding the Characteristics of somatic hybridization and cybridization.							tic		
	1.	1. Somatic cell fusion appears to be the only means through which two different parental genomes can be recombined among plants that cannot reproduce sexually (asexual or sterile).								
	2.	Protoplasts of sexually sterile to produce fertile diploids and		-	loid, an	d aneuploid) plants o	can l	be fused	
	3.	Somatic cell fusion does not cases somatic hybrids betwee in industry or agriculture.	overco	me sexu		-				
	4.	Somatic cell fusion is useful i	n the s	study of	cytopla	asmic genes	and thei	r ac	tivities	

and this information can be applied in plant breeding experiments.

2,3 and 4 correct, 1 incorrect

1,2 and 4 correct, 3 incorrect

1,2 and 3 correct, 4 incorrect B)

3,4 and 1 correct, 2 incorrect D)

A)

C)

98.	The most important part of an osmometer is:												
	A)	Humidifier			B)	Osmo	sensor						
	C)	Thermocoup	le hygro	meter	D)	Flame	ionization de	etector					
99.	Pick out the correct statement regarding aquaglyceroporins.												
	A)												
	B)	aquaglyceroporins along with water, transport glycerol, across the membrane, depending on the size of the pore											
	C)	C) aquaglyceroporins along with water, transport other small uncharged solutes, such as glycerol, CO ₂ , ammonia and urea across the membrane, depending on the size of the pore											
	D)		-	_		_	ort other small the size of the	_	d and unch	narged			
100.	Give t	the correct seq	uence fo	or the di	fferent	steps fo	llowed in We	stern Blo	otting.				
	1)	Tissue prepa	ration										
	2)	Gel electrop											
	3)	Blocking no	-		_								
	4)	Transfer of proteins from the gel to nitrocellulose paper											
	5)	Incubation w											
	6)	Detection an	a imagi	ng									
	A)	1, 2, 3, 4, 5,	6		B)	1, 3, 2	2, 5, 4, 6						
	C)	1, 2, 4, 3, 5,	6		D)	1, 2, 3	3, 5, 4, 6						
101.	Cellul	osic ethanol is	s:										
	A)	First generat	ion biof	uel	B)	Secon	d generation	biofuel					
	C)	Third genera	tion bio	fuel	D)	Fourtl	n generation b	oiofuel					
102.	102. Identify the farming approach established by Masanobu Fukuoka (1913–2008), a farmer and philosopher, introduced in his 1975 book <i>The One-Straw Revolution</i> . It referred to as "the Fukuoka Method".												
	A)	Mixed farmi	ng			Natur	al farming						
	C)	Ecofarming			D)	Organ	ic farming						
103.	-	art of a bioread undesirable a								•			
	A)	Agitator	B)	Baffle	;	C)	Sparger	D)	Jacket				
104.	profili	fy a DNA maring in kinship and selection to Random ample Variable nur Simple seque Single nucles	analysis locate a plification ber tan ence rep	and in factorial and in factorial and in general and in general and in general and in general and in factorial and in factori	forensic r a muta lymorpl eat	identifation res	ication, genet ponsible for a	ic linkag	e analysis/	marker			

as

105.	What	is meant by Plant b	reeders' r	ights?										
	A)	•												
			-		_		ig seed, c	cuttings, divisions,						
	D)	tissue culture) of		•		•		. 1 1						
	B)		Rights granted to the breeder for a new variety of plant that give the breeder exclusive control over the propagating material (including seed, cuttings, divisions,											
		tissue culture) of				eriai (iliciudii	ig seed, c	attings, divisions,						
	C)	Rights granted to the breeder of a new variety of plant that give the breeder exclusive control over the propagating material (including seed, cuttings, divisions, tissue culture) and harvested material (cut flowers, fruit, foliage) of a new variety for												
	D)	a number of years. Dights granted to the breader of a payr variety of plant that give the breader												
	D)	Rights granted to the breeder of a new variety of plant that give the breeder exclusive control over the propagating material (including seed, cuttings, divisions,												
		tissue culture) and harvested material (cut flowers, fruit, foliage) of a new variety for												
		ever.			`	, ,	υ,	•						
106.	Starch	n is synthesized in th	ne:											
	A)	ER B)		oroplast	C)	Cytosol	D)	Mitochondria						
107.	Match	n the correct inhibite	or with th	e followi	ng pro	cesses.								
	a)	Respiration	p)	Atraz	ine									
	b)	Photosynthesis	q)	KCN										
	c)	Protein synthesis	r)	α-ama										
	d)	Transcription	s)	Rifan	тустт									
	A)	a-s, b-q, c-r, d-p		B)	-	o-p, c-s, d-r								
	C)	a-p, b-s, c-r, d-q		D)	a-r, b	-q, c-s, d-p								
108.	Which	hich is the largest and most diverse class of voltage-gated channels?												
	A)	Sodium (Na ⁺⁾ cha	B)	Calcium (Ca ²⁺) channels										
	C)	Potassium (K^+) channels D) Chloride (Cl^-) channels												
109.	Pick o	out the apomixix in	which the	e megasp	ore mo	ther cell unde	rgoes the	usual meiotic						
		visions and a haploid embryo sac is formed. The new embryo may then arise either from												
	_	gg or from some other		_										
	A)	Nonrecurrent apor		B)		rrent apomixis								
	C)	Sporophytic apon	IIXIS	D)	vege	tative apomix	es							
110.	Carot	enoids molecules co	ontaining	oxygen,	such as	s lutein and ze	axanthin,	, are known as						
		ophylls. The unoxyg			ree) cai	otenoids such	as α-car	otene, β-carotene,						
		copene, are known				L 1.1.1 11 1 4 4 4 1	1	£149						
	Of these, which carotenoid is more associated with high light tolerance of plants?													

B)

D)

Zeaxanthin

β-carotene

A)

C)

Lutein

 α -carotene

111.											
	A)	Photosynthes			B)		ction of				
	C)	Reduction of	sulphate		D)	Oxida	ition of	nitrate			
112.	-	yse the followin A category?	g fatty aci	ids. V	Vhich a	mong th	nem are	essentia	al fatty	acids as we	ll as
	1.	Oleic acid	2	2.	Linol	leic acid		3.	Aracl	nidonic acid	
	A)	1, 2 & 3	B) 1	1 & 2	only	C)	1 & 3	only	D)	2 & 3 only	7
113.	algae i. La ii. Or St pe iii. Na	h of the statement, fungi and plantatin diagnosis is and plantation and Serial Number of taxa pure of taxa pure or photaxon composition.	ts (Melbo mandator n of name umber (IS blished or	ourne ry for es in F SSN) n or a	Code 2 names Portable or Interfer 1 J	of taxa e Documrnational	publish nent For I Standa 2012 wi	ed after mat (Pl ard Boo	· 1 Janua DF with k Numb esignati	ary 2012. an Internati per (ISBN) is	onal S
		_	_								
	A) C)	i alone is corn i & iv only ar			B) D)		ne is co only a	rrect re corre	ct		
114.	α- tax	konomy deals w									
	A) C)	Classical taxo Phylogeny	onomy		B) D)		o taxor imenta	nomy l taxono	omy		
115.	Speci	fic epithet exac	tly repeats	s the	generic	name c	alled:				
	A)	Tautonym			B)	Homo	•				
	C)	Synonym			D)	Autor	nym				
116.	stame	cual, tri or tetra ens many (10-2 is characteristic Apocynaceae Anacardiacea	20), stout, c feature o	arrai	nged sp	-	ovary s Ascle		, apoca		
117.	Matc. Colu a. Dic b. Pej c. Ba	h column I with mn I lynamous Stam	Column I	C olur . Anr i. Laı ii. Cu	l select nn II nonacea miaceae icurbita teracea	the cornae e e aceae					
	A)	a-(iii), b-(iv),			B)	, , ,		-(iii), d-	, ,		
	C	$a_{-}(iv)$ $b_{-}(i)$	-(iii) d-(i	i)	D)	a_(ii)	h_(iii)	$c_{-}(iv)$	1_(i)		

	written	by Carolus Linnaeus.						
	A)	Historia Naturalis	B)	Systema Naturae				
	C)	Species Plantarum	D)	Philosophia Botanica				
119.	Which statements are correct regarding Numenical Taxonomy? i). It is otherwise called Phenetics ii). All characters are equally weighed iii). The taxonomic unit is called Cladon iv). Michael Adanson is called as the Father of Numerical Taxonomy							
	A) C)	All are correct ii & iii only are correct	B) D)	i, ii & iv only are correct ii & iv only are correct				
120.	 Which among the following are not related to Cladistics? A) Principle of parsimony B) Ranking based on the age of common ancestor C) Recognizes only monophyletic groups D) Recognizes both monophyletic and paraphyletic groups 							

118. The foundation of International Code of Botanical Nomenclature is found in, a book