CHENNAI MATHEMATICAL INSTITUTE MSc Applications of Mathematics Entrance Examination 18 May 2016

Instructions:

• Enter your <i>Registration Number</i> here CMI PG –												
• Enter the name of the city where you write this test:												

• The allowed time is 3 hours.

- This examination has two parts. Part A has multiple-choice questions, while questions in Part B require detailed answers.
- The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.
- Answers to questions in Part A must be recorded on the sheet provided for the purpose.
- You may use the blank pages at the end for your rough-work.

For office use only

Part B

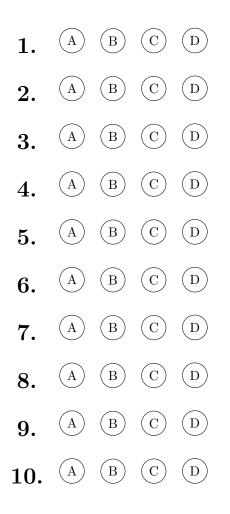
Qno	1	2	3	4	5	6	7	8	9	10	11	12
Marks												

•	Part A	Part B	Total
Score			

CHENNAI MATHEMATICAL INSTITUTE MSc Applications of Mathematics Entrance Examination 18 May 2015

You must record your answers to Part A here by filling in the appropriate circles: For example, if your answer to question number 7 is (A) and (D), record it as follows:

Part A



Important

The score in Part A will be used for screening purposes. Your answers to the questions in Part B will be marked only if your score in Part A places you over the cut-off. However, the scores in both the sections will be taken into account to decide whether you qualify for the interview.

Part A

This section consists of <u>Ten</u> (10) multiple-choice questions, each with one or more correct answers. Record your answers on the attached sheet by filling in the appropriate circles. Each question carries 5 marks. A solution receives credit if and only if all the correct answers are chosen, and no incorrect answer is chosen. Throughout, R denotes the set of real numbers.

- 1. Which of the following functions are uniformly continuous on their respective domains of definition?
 - (A) $f(x) = \exp(-x), x \in [0, \infty).$
 - (B) $g(x) = x^2 \exp(-x), x \in [0, \infty).$

 - (C) $h(x) = \frac{\sin(x)}{x}, \quad x \in (0, \infty).$ (D) $k(x) = \frac{x}{1+x^2}, \quad x \in (0, \infty).$
- 2. Let $\{a_n : n \ge 1\}$ be a sequence of real numbers, $s_n = \sum_{k=1}^n a_k$ and $m_n = \frac{s_n}{n}$. Which of the following statements is/are true?
 - (A) If $\{s_n\}$ converges to a real number s, then $\{a_n\}$ converges to 0.
 - (B) If $\{a_n\}$ converges to 0 then $\{s_n\}$ converges to a real number s.
 - (C) If $\{m_n\}$ converges to a real number m, then $\{a_n\}$ converges to m.
 - (D) If $\{a_n\}$ converges to a real number a, then $\{m_n\}$ converges to a.
- 3. Let A be a real symmetric $d \times d$ matrix, let D denote its determinant and T denote its trace. Which of the following statements is/are true?
 - (A) If D > 0 then **A** is strictly positive definite.
 - (B) If T > 0 then **A** is invertible.
 - (C) If **A** is strictly positive definite then D > 0.
 - (D) If D > 0 then T > 0.

4. Let M denote the number of 5-tuples (a_1, \dots, a_5) where each $a_i \ge 1$ is an integer and $\sum_{i=1}^{5} a_i = 7$. Then

- (A) $M \ge 14$.
- (B) $M \le 20$.
- (C) $M \in \{14, 21, 28\}.$
- (D) $M \in \{10, 15, 20\}.$
- 5. Let V be the vector space of polynomials in one variable with real coefficients. Which of the following subsets is/are subspaces of V?
 - (A) The set U consisting of all polynomials with integer coefficients.
 - (B) The set W consisting of all polynomials of degree at least 6.
 - (C) The set X consisting of all polynomials having at least one real root.
 - (D) The set Y consisting of all polynomials only with even powers of the variable.

6. Consider the sequence of functions f_n defined on the interval $[0,\infty)$ by

$$f_n(x) = \frac{nx}{1+n^2x^2}$$
, $x \in [0,\infty)$ $n \ge 1$.

Then the sequence $\{f_n(x)\}$

- (A) does not converge for some $x \in [0, \infty)$.
- (B) converges for every $x \in [0, \infty)$.
- (C) converges for every $x \in [0, \infty)$ and $f(x) = \lim_{n \to \infty} f_n(x)$ is a continuous function.
- (D) converges uniformly in $x \in [0, \infty)$.

7. Consider the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & t \\ 1 & 4 & t^2 \end{bmatrix}$$
. Which of the following is/are true?

- (A) A is invertible for all real values of t.
- (B) A is invertible for all positive t.
- (C) A is invertible for all negative integers t.
- (D) A is invertible for t = 3 and t = 4.
- 8. The dimension d_n of the vector space W of all $n \times n$ real symmetric matrices satisfies

(A)
$$d_n \geq \frac{n^2}{2}$$
 for all $n \geq 2$.

- (B) $d_n \ge \frac{2n^2}{3}$ for all $n \ge 2$.
- (C) $d_n \leq \frac{3n^2}{4}$ for all $n \geq 2$.
- (D) $d_n < (n + \frac{n^2}{2})$ for all $n \ge 2$.
- 9. Let A and B be symmetric strictly positive definite $d \times d$ matrices with real entries. Then we can conclude that
 - (A) A + B is a non-singular matrix.
 - (B) AB is a non-singular matrix.
 - (C) A + B is a symmetric strictly positive definite matrix.
 - (D) AB is a symmetric strictly positive definite matrix.
- 10. Let $f: (0,1] \mapsto [-1,1]$ and $g: [-1,1] \mapsto (0,1]$ be continuous functions. Which of the following statements is/are always true?
 - (A) f is uniformly continuous.
 - (B) g is uniformly continuous.
 - (C) $f \circ g$ is uniformly continuous.
 - (D) The function h(x) = xf(x) for $x \in (0, 1]$ is uniformly continuous.

(Here $f \circ g(x) = f(g(x))$.).

Part B

1. Show that

$$1 - \cos(x) \mid \leq \frac{1}{2}x^2, \quad \forall x \in \mathsf{R}$$

- 2. Show that every continuous function $f:[0,1] \mapsto \mathsf{R}$ is uniformly continuous.
- 3. Let $\{a_n : n \ge 1\}$ be a sequence of numbers such that $\lim_{n\to\infty} a_n x^n = 0$ for all x > 0. Show that the radius of convergence R of the power series

$$\sum_{n=1}^{\infty} a_n x^n$$

is infinite.

- 4. Let \mathcal{M} denote the class of all $d \times d$ real symmetric matrices that are strictly positive definite. We define a relation \ll on \mathcal{M} as follows: For $\mathbf{A}, \mathbf{B} \in \mathcal{M}, \mathbf{A} \ll \mathbf{B}$ if $\mathbf{B} \mathbf{A} \in \mathcal{M}$. Show that
 - (a) For $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{M}$

$$\mathbf{A} \ll \mathbf{B}$$
 and $\mathbf{B} \ll \mathbf{C} \Rightarrow \mathbf{A} \ll \mathbf{C}$.

(b) For $\mathbf{A} \in \mathcal{M}$ show that $\exists 0 < \alpha < \beta < \infty$ such that

$$\alpha \mathbf{I_d} \ll \mathbf{A} \ll \beta \mathbf{I_d}$$

where $\mathbf{I}_{\mathbf{d}}$ is the $d \times d$ identity matrix.

5. Let $0 < a < b < \infty$ be two real numbers. Define two sequences of real numbers as follows. $a_1 = a$; $b_1 = b$;

$$a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}; \text{ for } n \ge 1$$

Show that the sequence $\{a_n\}$ is increasing and the sequence $\{b_n\}$ is decreasing. Show that $\lim_n a_n = \lim_n b_n$.

6. For $\lambda > 0$ show that

$$\sum_{k=0}^{\infty} \sum_{j=k+1}^{\infty} \frac{\lambda^j}{j!} = \lambda e^{\lambda}.$$

- 7. Recall that a function $f : R \to R$ is continuous at a point $a \in R$ if, given $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) f(a)| < \epsilon$ whenever $|x a| < \delta$. Using this definition, show that if f and g are continuous at a then their product h = fg is also continuous at a.
- 8. Let L be the integer lattice, that is, the set of points (i, j) in the plane where i and j are integers. Let f be a real valued function defined on L. Suppose that for all $(i, j) \in L$,

$$f(i,j) = \frac{f(i+1,j) + f(i-1,j) + f(i,j+1) + f(i,j-1)}{4}.$$

If f attains its maximum at some point in L, show that f is a constant function.