Entrance Examination for CMI BSc (Mathematics & Computer Science) May 2011

Attempt all problems from parts A and C. Attempt any 7 problems from part B.

Part A. Choose the correct option and explain your reasoning briefly. Each problem is worth 3 points.

- 1. The word MATHEMATICS consists of 11 letters. The number of distinct ways to rearrange these letters is
- (A) 11! (B) $\frac{11!}{3}$ (C) $\frac{11!}{6}$ (D) $\frac{11!}{8}$
- **2.** In a rectangle ABCD, the length BC is twice the width AB. Pick a point P on side BC such that the lengths of AP and BC are equal. The measure of angle CPD is
- (A) 75° (B) 60° (C) 45° (D) none of the above
- **3.** The number of θ with $0 \le \theta < 2\pi$ such that $4\sin(3\theta + 2) = 1$ is
- (A) 2 (B) 3 (C) 6 (D) none of the above
- **4.** Given positive real numbers $a_1, a_2, \ldots, a_{2011}$ whose product $a_1 a_2 \cdots a_{2011}$ is 1, what can you say about their sum $S = a_1 + a_2 + \cdots + a_{2011}$?
- (A) S can be any positive number.
- (B) $1 \le S \le 2011$.
- (C) $2011 \leq S$ and S is unbounded above.
- (D) $2011 \le S$ and S is bounded above.
- **5.** A function f is defined by $f(x) = e^x$ if x < 1 and $f(x) = \log_e(x) + ax^2 + bx$ if $x \ge 1$. Here a and b are unknown real numbers. Can f be differentiable at x = 1?
- (A) f is not differentiable at x = 1 for any a and b.
- (B) There exist unique numbers a and b for which f is differentiable at x = 1.
- (C) f is differentiable at x = 1 whenever a + b = e.
- (D) f is differentiable at x = 1 regardless of the values of a and b.
- **6.** The equation $x^2 + bx + c = 0$ has nonzero real coefficients satisfying $b^2 > 4c$. Moreover, exactly one of b and c is irrational. Consider the solutions p and q of this equation.
- (A) Both p and q must be rational.
- (B) Both p and q must be irrational.
- (C) One of p and q is rational and the other irrational.
- (D) We cannot conclude anything about rationality of p and q unless we know b and c.
- 7. When does the polynomial $1 + x + \cdots + x^n$ have x a as a factor? Here n is a positive integer greater than 1000 and a is a real number.
- (A) if and only if a = -1
- (B) if and only if a = -1 and n is odd
- (C) if and only if a = -1 and n is even
- (D) We cannot decide unless n is known.

- **Part B.** Attempt any 7 problems. Explain your reasoning. Each problem is worth 7 points.
- 1. In a business meeting, each person shakes hands with each other person, with the exception of Mr. L. Since Mr. L arrives after some people have left, he shakes hands only with those present. If the total number of handshakes is exactly 100, how many people left the meeting before Mr. L arrived? (Nobody shakes hands with the same person more than once.)
- **2.** Show that the power of x with the largest coefficient in the polynomial $(1 + \frac{2x}{3})^{20}$ is 8, i.e., if we write the given polynomial as $\sum_i a_i x^i$ then the largest coefficient a_i is a_8 .
- **3.** Show that there are infinitely many perfect squares that can be written as a sum of six consecutive natural numbers. Find the smallest such square.
- **4.** Let S be the set of all 5-digit numbers that contain the digits 1,3,5,7 and 9 exactly once (in usual base 10 representation). Show that the sum of all elements of S is divisible by 11111. Find this sum.
- **5.** It is given that the complex number i-3 is a root of the polynomial $3x^4 + 10x^3 + Ax^2 + Bx 30$, where A and B are unknown real numbers. Find the other roots.
- **6.** Show that there is no solid figure with exactly 11 faces such that each face is a polygon having an odd number of sides.
- 7. To find the volume of a cave, we fit X, Y and Z axes such that the base of the cave is in the XY-plane and the vertical direction is parallel to the Z-axis. The base is the region in the XY-plane bounded by the parabola $y^2 = 1 x$ and the Y-axis. Each cross-section of the cave perpendicular to the X-axis is a square.
- (a) Show how to write a definite integral that will calculate the volume of this cave.
- (b) Evaluate this definite integral. Is it possible to evaluate it without using a formula for indefinite integrals?
- **8.** $f(x) = x^3 + x^2 + cx + d$, where c and d are real numbers. Prove that if $c > \frac{1}{3}$, then f has exactly one real root.
- **9.** A real-valued function f defined on a closed interval [a, b] has the properties that f(a) = f(b) = 0 and f(x) = f'(x) + f''(x) for all x in [a, b]. Show that f(x) = 0 for all x in [a, b].

Part C. Explain your reasoning. Each problem is worth 10 points.

- 1. Show that there are exactly 16 pairs of integers (x, y) such that 11x + 8y + 17 = xy. You need not list the solutions.
- **2.** A function g from a set X to itself satisfies $g^m = g^n$ for positive integers m and n with m > n. Here g^n stands for $g \circ g \circ \cdots \circ g$ (n times). Show that g is one-to-one if and only if g is onto. (Some of you may have seen the term "one-one function" instead of "one-to-one function". Both mean the same.)
- **3.** In a quadrilateral ABCD, angles at vertices B and D are right angles. AM and CN are respectively altitudes of the triangles ABD and CBD. See the figure below. Show that BN = DM.

In this figure the angles ABC, ADC, AMD and CNB are right angles.