H.T NO.								MLR15
---------	--	--	--	--	--	--	--	-------

Code No: A10470

MLR INSTITUTE OF TECHNOLOGY

(An Autonomous Institution)

II B.Tech I Sem Supplementary Examinations- January-2017

ELECTRONIC DEVICES

(Common to CSE, IT)

Time: 3 hours

Note: 1. This question paper contains two parts A and B.

- 2. Part A is compulsory which carries 25 marks. Answer all questions in part A.
- 3. Part B consist of 5 units. Answer any one full question from each unit. Each question Carries 10 marks and may have a, b, c as sub questions.

PART-A

1. a) A transistor has α =0.99. What will be the base current if the emitter current is	8mA. [2M]
b) Give two conditions of Barkhausen criterion.	[2M]
c) What is Q-point in Transistor.	[2M]
d) Write the Shockley's equation for drain current in JFET and in which region of	f JFET
characteristics it is valid.	[2M]
e) Define Static and Dynamic resistance of diode.	[2M]

- 2. a) A transistor has β=150. Calculate the approximate collector and base currents, if the emitter current is 12mA.
 [3M]
 - b) What is 'thermal runaway' phenomenon in a BJT? [3M]
 - c) List the factors which affect the operating point stability of transistor. [3M]
 - d) Estimate the values of R and C for an output frequency of 1KHz in RC- phase shift oscillator. [3M]
 - e) For a Si diode at temperature of 100° C, determine the forward voltage require to be applied. The reverse saturation current is 5µA,I_F=57mA. [3M]

PART-B

	3. a) With a neat diagram explain how potential barrier is formed in a PN-junctionb) Define Zener diode and explain the VI-characteristics of Zener diode.	[5M] [5M]		
	OR			
4. a) Distinguish between 'Avalanche breakdown' and 'Zener breakdown' in a PN junction				
	Diode.	[5M]		
	b) Explain V-I characteristics of an diode with the help of diode equation.	[5M]		
	5. a) Draw the circuit of Full wave rectifier and explain its working along with input and	output		
	waveforms.	[5M]		
	b) Derive an expression for average and RMS value of full wave rectifier.	[5M]		
	OR			
	6. a) For a two diode full wave rectifier with load of $2k\Omega$, the input voltage applied to diode is 230 sinwt. The forward resistance of the diode is 10Ω , calculate	each		
	a) peak value of current, b) dc or average value of current			
	c) r.m.svalue of current, d) rectifier efficiency			
	e) ripple factor	[5M]		
	b) Derive an expression for efficiency and transformer utilization factor of half wave			

b) Derive an expression for efficiency and transformer utilization factor of half wave rectifier. [5M]

Max.Marks:75

 7. a) Explain the working of NPN transistor with a neat diagram and establish relationships between various currents flowing through it. b) Compare the performance of CB,CE and CC amplifiers. OR 8. a) Explain how transistor can be used as a DigitalSwitch. b) Design a voltage divider bias circuit using transistor for V_{CC}=15v, I_C=5mA, β=100 V_{CE}=5v and VE=5v. 	[5M] [5M] [5M] 0, [5M]
 9. a) Draw the 'drain characteristics' of n-channel JFET and Explain the pinch-off phenomic with relevant diagrams. b) Discuss the operation of class-A power amplifier OR 10. a) Distinguish between BJT and JFET. b) Explain the construction and working of N-type depletion mode MOSFET. 	00000000000000000000000000000000000000
11.a) Explain the basic structure of feedback amplifier and hence derive an expression of negative feedback amplifiers.b) With a neat labeled circuit diagram of Colpitts oscillator, explain its workir principle and write an expression for its frequency of oscillations	
OR 12. a) Explain with a neat circuit diagram, the working of an CrystalOscillator.	[5M]
b) Discuss the various topologies of feedback circuits.	[5M]
