MLR15

MLR INSTITUTE OF TECHNOLOGY

(An Autonomous Institution) B.Tech I Year I Sem Examinations, January-2016

NETWORK ANALYSIS

(ECE)

Time: 3 hours

Max. Marks: 75

NOTE: 1. This paper contains two parts A and B.

2. PART A is compulsory which carries 25 marks. Answer all the questions in PART A.

3. Part B consists of 5 units. Answer any one full question from unit. Each

Question carries 10 marks and may have a,b,c as sub questions.

PART-A (25 Marks)

1	(a)	Define a voltage source. Compare independent and dependent sources.	2 M
	(b)	Explain the concept of super node.	2 M
	(c)	Define (i) RMF value (ii) average value for periodic waveforms.	2 M
	(d)	State Thevenin's and Norton's theorems.	2 M
	(e)	Draw the hybrid parameter model for a two-port network and write its characterizing equations.	2 M
2	(a)	What are passive circuit elements? Write the voltage and current relationship in each element.	3 M
	(b)	Consider a delta connected resistive network with R_A , R_B and R_C . Find its star equivalent network.	3 M
	(c)	A parallel circuit has $R=10\Omega$, $L=10$ mH and $C=10\mu$ F. 150A, 50Hz source is connected across it. Find admittance, voltage and power factor.	3 M
	(d)	State and prove Tellegen's theorem.	3 M
	(e)	Explain the concept of basic tieset with example.	3 M

PART-B

50 Marks

(a) Define Kirchhoff's current law. Explain with the help of a suitable circuit diagram. 5M 3 (b) Explain the concept of source transformation with suitable example. 5M

OR

- 4 (a) Derive an expression for total inductance when connected in parallel. 4M6M
 - (b) Determine i_x and v_x in the circuit of Fig. 1.

(a) For the circuit of Fig. 2, use nodal analysis to determine the current labeled i_1 . 5

(b) Find the power supplied by the 4V source in the Fig. 2.

OR

- Use mesh analysis to determine the current i passing through 3Ω resistor in the circuit of 6M 6 (a) Fig.3.
 - (b) Find the power supplied by the 6V source in the Fig. 3.

- 7 (a) If $i_s=0.4\cos 500t$ A in the circuit shown in the Fig.4, find (i) $i_L(t)$ (ii) $i_x(t)$. 6M 4M
 - (b) Find the expression for the instantaneous power in the 5 Ω resistor in Fig. 4.

8 (a) Let $\omega = 100$ rad/s in the circuit if the Fig.5. Find Z_{in}. (b) Repeat part (a) if a short circuit is connected from x to y.

6M

4M

4M

9 (a) Determine the value of Z_L to be connected across AB in Fig.6 for maximum power 5M transfer.

(b) Calculate the maximum power absorbed by Z_L in the Fig. 6.

(a) State and Explain Superposition Theorem
(b) Find the current in the 6 Ω resistor using superposition theorem shown in figure 7

- 11 (a) Calculate the Z-parameters for the network shown in Fig.8. 6M
 - (b) For the network of part (a), find transmission parameters using conversion formulas. 4M

- 12 (a) For the graph shown in the Fig.9, consider the tree formed by branches(2,3,4).Using 6M this tree, find tie-set matrix.
 - (b) Find the cut-set matrix for the graph shown in the Fig. 9.

----X----

5M

5M

5M

4M