PAPER - II

PHYSICAL SCIENCES

Note : Attempt all the questions. Each question carries *two* (2) marks.

1. Laplace transform of $(1 - e^t)/t$ is :

1)
$$\left(\frac{s-1}{s}\right)$$

2) $\log\left(\frac{s}{s-1}\right)$
3) $\left(\frac{s}{s-1}\right)$
4) $\log\left(\frac{s-1}{s}\right)$

- 2. The expansion of $f(z) = \frac{1}{(z-1)(z-2)}$ in the region |z| < 1
 - 1) $\frac{1}{2} \frac{3}{4}z + \frac{7}{8}z^2 \dots$
 - 2) $\frac{1}{2} + \frac{3}{4}z + \frac{7}{8}z^2 \dots$
 - 3) $\frac{1}{2}z + \frac{3}{4}z^2 + \frac{7}{8}z^3 \dots$

4)
$$\frac{1}{2} - \frac{3}{4}z - \frac{7}{8}z^2 \dots$$

- 3. If Cauchy-Riemann condition are satisfied then,
 - 1) Partial derivatives are continuous
 - 2) Partial derivatives are zero
 - 3) Partial derivatives are discontinuous
 - 4) Partial derivatives are not possible
- 4. The measure of spread of an arbitrary probability distribution from its mean value $\langle X \rangle$ is given by,

1)
$$P(|x - \langle X \rangle| \le k\sigma) \le \frac{1}{k^2}$$

- 2) $P(\left|x^2 \langle X \rangle\right| \ge k\sigma) \le \frac{1}{k^2}$
- 3) $P(\left|x^2 \left\langle X^2\right\rangle\right| \le k\sigma) \le \frac{1}{k^2}$
- 4) $P(|x \langle X \rangle| \ge k\sigma) \le \frac{1}{k^2}$

 \mathbf{F}

- 5. Atwood's machine is an example of
 - 1) Conservative system with non- holonomic and scleronomic constraint
 - 2) Non-Conservative system with holonomic and scleronomic constraint
 - 3) Conservative system with holonomic and scleronomic constraint
 - 4) Conservative system with holonomic and Rheonomic constraint
- 6. The path followed by a particle in sliding from one point to another in the absence of friction in the shortest time is a
 - 1) Sphere
 - 2) Sigmoid
 - 3) Cycloid
 - 4) Catenary of revolution
- 7. A massless spring having force constant k has masses m_1 and m_2 attached at its two ends. The frequency of oscillation is

1)
$$\omega = \sqrt{\frac{k(m_1 + m_2)}{m_1 m_2}}$$
2)
$$\omega = \sqrt{\frac{k(m_1 - m_2)}{m_1 m_2}}$$
3)
$$\omega = \sqrt{\frac{m_1 m_2}{k(m_1 - m_2)}}$$

4)
$$\omega = \sqrt{\frac{m_1 m_2}{k \left(m_1 + m_2\right)}}$$

- 8. When only one single frequency is involved in the solution of equations of motion then the coordinate appearing in it will be called
 - 1) Normal coordinate
 - 2) Generalized coordinate
 - 3) Single coordinate
 - 4) Normal coordinate of system

- **9.** The force between two straight parallel wires carrying currents I_a and I_b is proportional to (where r is the distance between the wires)
 - 1) $\frac{I_a I_b}{r^2}$ 2) $\frac{I_a I_b}{r}$ 3) $\frac{I_a I_b}{r^3}$

4)
$$\left(\frac{I_a I_b}{r}\right)^2$$

10. The wave equation for electric field in vacuum is

1)
$$\nabla^2 E - \mu_o \varepsilon_o \frac{\partial^2 E}{\partial t^2} = 0$$

2)
$$\nabla^2 E + \mu_o \varepsilon_o \frac{\partial^2 E}{\partial t^2} = 0$$

$$3) \qquad \nabla^2 E - \frac{\partial^2 E}{\partial t^2} = 0$$

4)
$$\nabla^2 E - c^2 \frac{\partial^2 E}{\partial t^2} = 0$$

- 11. When EM wave is incident on a dielectric, it is
 - 1) fully transmitted
 - 2) fully reflected
 - 3) partially reflected and partially transmitted
 - 4) fully polarized
- 12. Refractive index of a material is approximately equal to square root of
 - 1) ε_o 2) μ_o
 - 3) $\varepsilon_o \mu_o$ 4) ε_o / μ_o

13. The commutation relation $\left[\hat{H}, \hat{p}_x\right]$ is

1)
$$-i\hbar \frac{\partial V(x)}{\partial x}$$

2) $-\frac{\hbar}{i} \frac{\partial V(x)}{\partial x}$
3) $-i\frac{\partial V(x)}{\partial x}$
4) $-\frac{\hbar^2}{i} \frac{\partial V(x)}{\partial x}$

- 14. The eigenvalue of the operator \hat{J}_z is
 - 1) $m\hbar$ 2) $m^2\hbar$
 - 3) $m\hbar^2$ 4) \hbar
- 15. The wave function of a hydrogen atom is denoted by $\psi(r, \theta, \varphi)$. Then the shape of the atomic orbital is determined by
 - 1) the angular part of $\psi(r, \theta, \phi)$
 - 2) the radial part of $\psi(r, \theta, \phi)$
 - 3) both 1 and 2
 - 4) linear part of $\psi(r, \theta, \varphi)$
- 16. Which of the following relations gives the upper limit to the energy of n^{th} state using variational principle?
 - 1) $\langle \psi | H | \psi \rangle$
 - 2) $\langle \psi | H | \psi^* \rangle$
 - 3) $\langle \psi | \hat{p} | \psi \rangle$
 - 4) $\langle \psi | \hat{x} | \psi \rangle$

- **17.** A fluid at high pressure is throttled through a narrow porous opening in a region of lower pressure without any transfer of heat. In such process the
 - 1) Entropy does not change
 - 2) Gibbs free energy does not change
 - 3) Enthalpy of fluid is constant
 - 4) Entropy is decreased
- 18. Three identical spin $\frac{1}{2}$ fermions are to be distributed in two non-degenerate distinct energy levels. The number of ways this can be done is
 - 1) 6 2) 4
 - 3) 10 4) 2
- **19.** An electric current of 3 amp flows through a resistance of 10 ohm. It is being cooled by running water and kept at temperature 300 K. The change in entropy per second of the resistance is

1)	1 J/deg	2)	0.5 J/deg
3)	No change	4)	2 J/deg

20. The change in internal energy of the gas is directly proportional to

- 1) change in volume
- 2) change in pressure
- 3) change in temperature
- 4) change of pressure and volume
- **21.** Which of the following is not an exact differential?
 - 1) dQ(Q = heat absorbed)
 - 2) dU(U = internal energy)
 - 3) dS(S = entropy)
 - 4) dF(F = free energy)

- **22.** When a program is being executed in an 8085 microprocessor, its program counter contains
 - 1) the number of instruction in the current program that have already been executed
 - 2) the total number of instructions in the program being executed
 - 3) the memory address of the instruction that is being currently executed
 - 4) the memory address of the instruction that is to be executed next
- 23. Power in a circuit is measured by measuring a current through the resistor. The current is measured with an accuracy of $\pm 1.5\%$ and the tolerance band of the resistor $\pm 0.5\%$. The errors are limiting or guarantee errors. The accuracy with which power is measured is

1)
$$\pm 1.125\%$$
 2) $\pm 3.5\%$

- 3) $\pm 2\%$ 4) $\pm 2.5\%$
- 24. A diode for which you can change the reverse bias, and thus vary the capacitance is called a
 - varactor diode
 tunnel diode
 zener diode
 switching diode
- 25. The principal of least squares states that
 - 1) The sum of the residuals is minimum
 - 2) The average sum of two groups should be minimum
 - 3) The sum of the squares of the residuals should be minimum
 - 4) The sum of the squares of the residuals should be maximum

26. If $A \times B = ab\sin\theta$ then $B \times A$ is

1)
$$-ab\sin\theta$$
 2) $ab\sin\theta$

3)
$$ab\cos\theta$$
 4) $-ab\cos\theta$

27. If ϕ and ψ are harmonic functions, then from Green's function $\int_{s} \phi \frac{\partial \psi}{\partial n} ds$ is

1)
$$\int_{s} \psi \frac{\partial \phi}{\partial n}$$
 2) 0

3)
$$\int_{s} \phi \frac{\partial \psi}{\partial n}$$
 4) $\phi \psi$

28. The rank of matrix
$$\begin{bmatrix} a & -1 & 0 \\ 0 & a & -1 \\ -1 & 0 & a \end{bmatrix}$$
 is 2 for a equal to

29. The normalization of Hermite polynomial $H_n(x)$ yields,

1)
$$2^{n} \pi^{\frac{1}{2}} n!$$

2) $\pi^{\frac{1}{2}} n!$

3) $2^n \pi n!$

4) $2 \pi^{\frac{1}{2}n!}$

- **30.** If there exist holonomic constraints, expressed in k equation in the form $f(r_1, r_2, r_3, \dots, t) = 0$ then the system is said to have
 - 1) 3N-K degrees of freedom
 - 2) 3N degrees of freedom
 - 3) K degrees of freedom
 - 4) 3N-f degrees of freedom
- **31.** The conservation of linear momentum in the absence of applied force requires the validity of
 - 1) Weak law of action and reaction
 - 2) Strong law of action and reaction
 - 3) Law of inertia
 - 4) Newton's second law
- **32.** Which one of the following is true for ellipse?
 - 1) e > 1
 - 2) *e* = 1
 - 3) *e* < 1
 - 4) e = 0
- **33.** In neutron-proton scattering for which $m_1 = m_2$, the scattering angle in the laboratory system is equal to
 - 1) twice the scattering angle in centre of mass system
 - 2) thrice the scattering angle in centre of mass system
 - 3) the scattering angle in centre of mass system
 - 4) half the scattering angle in centre of mass system

34. According to the Gauss's theorem the electrostatic field E at a point r due to a point charge q is defined as

1)
$$\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{r}$$

2) $\frac{1}{4\pi\varepsilon_0} \frac{q}{r} \vec{r}$

$$3) \qquad \frac{1}{4\pi\varepsilon_0} \frac{q}{r^3} \hat{r}$$

$$4) \qquad \frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}$$

35. If a long straight conductor carries a current of λ per unit length, then the electric field at a distance *r* from the centre of the conductor is

1)
$$\frac{\lambda}{2\pi\varepsilon_o r}$$

2) $\frac{\lambda}{2\pi\varepsilon_o r^2}$

3)
$$\frac{\lambda}{4\pi\varepsilon_o r}$$

4)
$$\frac{\lambda}{4\pi\varepsilon_o r^2}$$

- **36.** If current in a conductor increases, then according to Lenz's law self-induced voltage will
 - 1) aid the increasing current
 - 2) tend to decrease the amount of current
 - 3) produce the current opposite to the increasing current
 - 4) aid the applied voltage

- 37. Which is a valid description of a linearly polarized wave with a diagonal orientation?
 - 1) two linearly polarized waves that are orthogonal and in phase
 - 2) two linearly polarized waves that are orthogonal and out of phase by 90°
 - 3) two out-of-phase elliptically polarized waves with opposite rotations
 - 4) none of these
- **38.** The de-Broglie wavelength of a material particle which is in thermal equilibrium at temperature T is :

1)
$$\lambda = \frac{h^2}{\sqrt{2mkT}}$$

2) $\lambda = \frac{h}{\sqrt{3mkT}}$
3) $\lambda = \frac{2h^2}{\sqrt{3mkT}}$
4) $\lambda = \frac{h^3}{\sqrt{2mkT}}$

- 39. Every moving particle is associated with a wave packet, which
 - 1) travels with the speed of light
 - 2) has equal size as the particle
 - 3) travels with the same speed of the particle
 - 4) is imaginary
- 40. If E_1 is the energy of the lowest state of a one dimensional potential box of length l and E_2 is the energy of the lowest state when the length of the box is doubled. Then,
 - 1) $E_2 = 2E_1$
 - 2) $E_2 = \frac{E_1}{2}$
 - 3) $E_2 = \frac{E_1}{4}$
 - 4) $E_2 = 4E_1$
- M2002

- 41. Which one of the following particles is described by a symmetric wave function?
 - 1) Proton 2) Neutron
 - 3) Muon 4) π -meson
- **42.** The transition probability $W_{n \to k}$ by constant perturbation using time dependent perturbation theory is
 - 1) $W_{n \to k} = \frac{|H'_{kn}|}{\hbar^2} t^2$ 2) $W_{n \to k} = \frac{|H'_{kn}|^2}{\hbar^2} t^2$

3)
$$W_{n \to k} = \frac{|H'_{kn}|}{\hbar^2} t$$
 4) $W_{n \to k} = \frac{|H'_{kn}|}{\hbar} t$

- **43.** Consider a proton moving at $2 \times 10^5 \text{ ms}^{-1}$ velocity. The uncertainty in measuring the position of the particle is :
 - 1) 2.5×10^{-15} m 2) 1.6×10^{-13} m
 - 3) 2.9×10^{-15} m 4) 1.2×10^{-13} m
- 44. The entropy of a system S, is related to the accessible phase space volume Γ by $S = k_B \ln \Gamma(E, N, V)$ where E, N and V are the energy, number of particles and volume respectively. From this, one can conclude that Γ
 - 1) does not change during evolution to equilibrium
 - 2) oscillates during evolution to equilibrium
 - 3) is a maximum at equilibrium
 - 4) is a minimum at equilibrium
- 45. Velocity of molecules based on Maxwell's law of distribution is
 - 1) greater than the mean velocity
 - 2) equal to root mean square velocity
 - 3) less than the root mean square velocity
 - 4) equal to the mean velocity

- **46.** Two stars A and B emit maximum radiation at 3500 Å and 4900 Å, respectively. The temperature of two stars A and B are in the ratio
 - 1) 7:5 2) 1:7
 - 3) 3:2 4) 2:5
- **47.** In a voltage divider biased *npn* transistor. If the upper voltage-divider resistor (the one connected to Vcc) opens, which one of the following will occur?
 - 1) The transistor into cutoff
 - 2) The transistor goes into saturation
 - 3) The transistor burns out
 - 4) The supply voltage is too high
- **48.** When transistors are used in digital circuits they usually operate in the
 - 1) active region
 - 2) breakdown region
 - 3) saturation and cutoff region
 - 4) linear region
- **49.** An output which is proportional to the addition of two or more inputs is from which type of amplifier?
 - 1) differentiator
 - 2) difference
 - 3) summing
 - 4) analog substractor
- 50. The resolution of a D/A converter is approximately 0.4% of its full-scale range. It is a
 - 1) 8-bit converter
 - 2) 10-bit converter
 - 3) 12-bit converter
 - 4) 16-bit converter

ROUGH WORK

ROUGH WORK