PAPER – III

PHYSICAL SCIENCES

Note: Attempt all the questions. Each question carries two (2) marks.

Using shift operator $\Delta^3 y_2$ is equal to 1.

1)
$$\nabla^3 y_5$$

2)
$$\nabla^2 y_{\rm f}$$

3)
$$\nabla^5 y_3$$

The christoffel's symbol of second kind $\begin{cases} i \\ ii \end{cases}$ is 2.

1)
$$\partial /\partial x_j^i$$

2)
$$\partial /\partial x_i^j$$

3)
$$\frac{\partial}{\partial x^i} (\log \sqrt{g})$$

4)
$$\frac{\partial}{\partial x^i} (\log g)$$

3. The elements of translation group may be denoted positions four vectors x, μ translated for vector,

1)
$$x'_{\mu} = a_{\mu} - x_{\mu}$$

$$2) x'_{\mu} = u_{\mu} a_{\mu}$$

$$3) x' = \frac{x_{\mu}}{a_{\mu}}$$

$$4) \qquad x'_{\mu} = u_{\mu} + a_{\mu}$$

Equation of motion for a pendulum bob suspended by a spring and allowed to swing in 4. a vertical plane.

1)
$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} + mgr\sin\theta = 0$$

2)
$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} + mgr\cos\theta = 0$$

3)
$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} - mgr\cos\theta = 0$$

4)
$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} - mgr\sin\theta = 0$$

5. Which of the following relation is correct?

1)
$$\frac{\partial \dot{T}}{\partial \dot{q}_J} + 2 \frac{\partial T}{\partial q_j} = Q_j$$

$$2) \qquad \frac{\partial \dot{T}}{\partial \dot{q}_J} + \frac{\partial T}{\partial q_j} = Q_j$$

3)
$$\frac{\partial \dot{T}}{\partial \dot{q}_{J}} - \frac{\partial T}{\partial q_{j}} = Q_{j}$$

4)
$$\frac{\partial \dot{T}}{\partial \dot{q}_J} - 2 \frac{\partial T}{\partial q_j} = Q_j$$

6. The path of shortest time between two points at different heights from ground is a

1) straight line 2) parabola

3) cycloid circle

7. Find the value of α and β for the following canonical transformation equations

$$Q = q^{\alpha} \cos \beta p$$

$$P = q^{\alpha} \sin \beta p$$

1)
$$\frac{1}{2}$$
 and 2

2) 2 and
$$\frac{1}{2}$$

4) 2 and 3

3 and 2

8. Consider a particle of mass m moving in an one dimensional potential well with rigid walls at x = -a and x = a, the quantization rule for this system based on WKB approximation is

1)
$$\int p(x) \cdot dx = 2\pi \hbar$$

$$2) \qquad \int p(x) \cdot dx = 2n \,\pi \hbar$$

3)
$$\int p(x) \cdot dx = 2n\pi^2 \hbar^2$$

4)
$$\int p(x) \cdot dx = 4n\pi\hbar.$$

9. Consider a spherically symmetric potential,

$$V(r) = \begin{cases} 0, & r > l \\ -V_0, & r < l \end{cases}$$

The differential scattering cross section of this potential using Born approximation is,

$$1) \qquad \frac{4\mu^2V_0^2}{q^6\hbar^4} \big| q l \cos q l - \sin q l \big|^2 \qquad \qquad 2) \qquad \frac{\mu^2V_0^2}{q^6\hbar^4} \big| q l \cos q l - \sin q l \big|^2$$

$$2) \qquad \frac{\mu^2 V_0^2}{q^6 \hbar^4} \big| q l \cos q l - \sin q l \big|^2$$

3)
$$\frac{2\mu^2V_0^2}{g^2\hbar^4} |ql\cos ql - \sin ql|^2$$
 4) $\frac{\mu^2V_0^2}{g^2\hbar^4} |ql\cos ql - \sin ql|^2$

4)
$$\frac{\mu^2 V_0^2}{q^2 \hbar^4} |q l \cos q l - \sin q l|^2$$

10. The relation for optical theorem for the elastic scattering of spherically symmetric potential is

1)
$$\sigma = \frac{4\pi^2}{k^2} \sum_{l=0}^{k} (2l+1) \sin^2 \delta_l$$

2)
$$\sigma = \frac{\pi}{k} \sum_{l=0}^{k} (2l-1) \sin^2 \delta_l$$

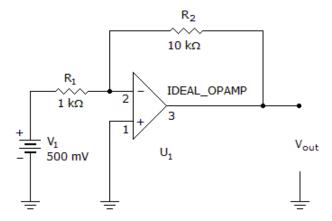
3)
$$\sigma = \frac{4\pi}{k} \sum_{l=0}^{k} (2l+1) \sin^2 \delta_l$$

4)
$$\sigma = \frac{\pi^2}{k^2} \sum_{l=0}^{k} (2l+1) \sin^2 \delta_l$$

11. Consider a mole of a material made of molecules for which the electron clouds each have l = 0, s = 1; there is no spin-orbit coupling. It is placed in an external magnetic field of strength 3 T, and is at a temperature of 2 K. What is the magnetic moment?

A collection N of non-interacting spins S_i , $i = 1, 2...N(S_i = \pm 1)$ is kept in an external **12.** magnetic field B at a temperature T. The Hamiltonian of the system is $H = -\mu B \sum_{i} S_{i}$. What should be the minimum value of $\frac{\mu B}{k_{B}T}$ for which the mean

4


value
$$\langle S_i \rangle \ge \frac{1}{3}$$
?

$$1) \qquad 2 \ln 2$$

$$3) \qquad \frac{3}{2} \ln 2$$

$$4) \qquad \frac{1}{2} \ln 2$$

- **13.** Which of the following is correct? The output impedance
 - 1) of a current source is high and voltage source is low
 - 2) of a current source is low and voltage source is high
 - 3) is high for both current and voltage source
 - 4) is low for both current and voltage source
- **14.** What is the output voltage of the following circuit?

1) 15 V

2) 5 V

3) -5 V

- 4) −15 V
- **15.** The equivalent noise bandwidth of a network is
 - 1) The bandwidth of the system
 - 2) The bandwidth of the noise source
 - 3) The bandwidth of a white noise
 - 4) Combined bandwidth of source and white noises
- **16.** F.T of $x(t)\cos(2\pi f_0 t)$ is

1)
$$x(t) \cos(2\pi f_0 t) \leftrightarrow 1/2 X(f - f_0) + 1/2 X(f + f_0)$$

2)
$$x(t) \cos (2\pi f_0 t) \leftrightarrow 1/2 X(f - f_0) + 2X(f + f_0)$$

3)
$$x(t) \cos(2\pi f_0 t) \leftrightarrow X(f - f_0) + X(f + f_0)$$

4)
$$x(t) \cos(2\pi f_0 t) \leftrightarrow 2X(f - f_0) + 2X(f + f_0)$$

- 17. With the increasing quantum number, the energy difference between adjacent levels in atom
 - 1) increases

2) remains constant

3) decreases

4) becomes zero

18. When B is rotational constant in rotational Raman spectrum of CO molecule the separation between the Stokes line is

2B1)

4B2)

6B 3)

4) 12B

19. A transition between two rotational energy levels results in a radiation that falls in the,

Visible or ultra violet region 1)

2) Near infra-red region or microwave region

3) Far infra-red region or microwave region

4) All the above

20. Identify from the following the volume of the rhombohedral unit cell

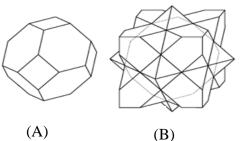
 $abc\sqrt{1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma+2\cos\alpha\cos\beta\cos\gamma}$ 1)

2) $abc\sin\beta$

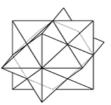
abc3)

 $a^3\sqrt{1-3\cos^2\alpha+2\cos^3\alpha}$ 4)

21. How many Rhombohedral unit cells makes one Hexagonal unit cell?


2 1)

2) 3


3) 4

6 4)

Identify the external first Brillouin zone boundary of the FCC system from the 22. following surfaces

6

(A)

(C)

(D)

(A) 1)

(B) 2)

(C) 3)

4) (D)

23. The inverse Fourier transform of structure factor Fg will result in

1) Ist Brillouin zone 2) IInd brillouin zone

Charge density 3)

Fermi surface 4)

Η

24.	If the velocity of sound in a mono-atomic solid is of the order 10 ³ m/s, the frequency of
	the sound wave whose $\lambda = 20 \text{ Å}$ is

1)
$$\omega = 3.14 \times 10^{12} rad / sec$$

2)
$$\omega = 6.28 \times 10^{12} rad / sec$$

3)
$$\omega = 3.14 \, rad / \sec$$

4)
$$\omega = 6.28 \ rad/\sec$$

25. Which of the following represents Debye T³ law?

1)
$$C_v \cong \frac{12\pi^3}{3} Nk_B \left(\frac{T}{\theta}\right)^3$$

2)
$$C_v \cong \frac{\pi^3}{5} Nk_B \left(\frac{T}{\theta}\right)^3$$

3)
$$C_v \cong \frac{12\pi^4}{5} Nk_B \left(\frac{T}{\theta}\right)^3$$

4)
$$C_v \cong rac{\pi^4}{5} N k_B \left(rac{T}{ heta}
ight)^3$$

26. Thermo electric generator works with the principle of

1) Peltier effect

2) Joule-Thomson effect

3) Seebeck effect

4) Debye–Falkenhagen effect

27. For which type of material is the Fermi energy level is located in the gap between valence and conduction bands?

1) conductor only

- 2) semiconductor only
- 3) conductor and semiconductor
- 4) insulator and semiconductor

28. The size of the nucleus can be determined by

- 1) Electron scattering
- 2) Energy levels of muonic atoms
- 3) Ground state energies of the isotopic spin multiplet
- 4) All of the above

29. The binding energy per nucleon is maximum for the nucleus

$$1)$$
 56 Fe

30. Binding fraction of deuteron is

1)
$$-2.2244 \text{ MeV}$$

7

			. (-	
31.	Identify the unknown X in the reaction $^6Li(d,lpha)X$			
	1)	4Be	2)	4Li
	3)	$^4 He$	4)	4H
32.	. The reaction which led to the discovery of first artificial radioactive isotope by Irene Curie is			
	1)	$^{27}Al(lpha,n)^{30}P$	2)	$^{27}Al(p,n)^{30}P$
	3)	$^{27}Al(p,lpha)^{30}P$	4)	$^{27}Al(n,lpha)^{30}P$
33.	. Which of the following is spallation reaction?			
	1)	Radioactive decay	2)	Nuclear fission
	3)	Nuclear fusion	4)	Inelastic scattering
34.	. The reaction $\pi^- + p \to \Lambda^\circ + \pi^\circ$ is forbidden because of			ase of
	1)	Law of baryon number conservation	2)	Law of strangeness conservation
	3)	Law of charge conservation	4)	Law of hypercharge conservation
35.	The baryon number of proton, the lepton number of proton, the baryon number of lepton and the lepton number of electron are respectively			
	1)	Zero, zero, one and zero	2)	One, one, zero and one
	3)	One, zero, zero and one	4)	Zero, one, one and zero
36.	A st	ate containing only one strange particl	e	
	1) Can decay into a state of zero strangeness			
	2) Can be created strongly from a state of zero strangeness			

- 3) Cannot exist
- 4) Cannot decay

37. The charge of charm, down, top quarks are respectively

1)
$$\left(\frac{2}{3}e\right), \left(\frac{-1}{3}e\right), \left(\frac{-1}{3}e\right)$$

$$2) \qquad \left(\frac{2}{3}e\right), \left(\frac{-1}{3}e\right), \left(\frac{2}{3}e\right)$$

3)
$$\left(\frac{1}{3}e\right), \left(\frac{-1}{3}e\right), \left(\frac{2}{3}e\right)$$

4)
$$\left(\frac{2}{3}e\right), \left(\frac{2}{3}e\right), \left(\frac{-1}{3}e\right)$$

- **38.** Greens functions for the boundary value problem $\frac{d^2y}{dx^2} + \mu^2x = 0$ with boundary condition y(0) = 0 = y(1) when x < t
 - 1) $-\frac{\sin \mu x \sin \mu (t-1)}{\mu \sin \mu}$

 $2) - \frac{\sin \mu t \sin \mu (x-1)}{\mu \sin \mu}$

3) $\frac{\sin \mu x \sin \mu (t-1)}{\mu \sin \mu}$

- 4) $\frac{\sin \mu t \sin \mu (x-1)}{\mu \sin \mu}$
- **39.** Diffusivity of the substance h^2 in two dimensional steady flow of heat is given by
 - $1) \qquad h^2 = \nabla^2 \psi$

 $2) \qquad \frac{\partial \psi}{\partial t} = h^2 \nabla^2 \psi$

3) $\frac{\partial \psi}{\partial t} = h^2$

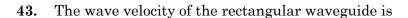
- 4) $\nabla \psi = h^2$
- **40.** A string stretched between two fixed points (0,0) ad (1,0) and is released at rest from the positions $u = \lambda \sin \pi x$. The expression for its subsequent displacement u(x,t) is,
 - 1) $\lambda \cos(c\pi t)\sin(\pi x)$

2) $\lambda \sin(c\pi t)\sin(\pi x)$

3) $\lambda \cos(\pi t) \sin(c\pi x)$

- 4) $\lambda \sin(c\pi t)\cos(\pi x)$
- **41.** In Simpson's rule if fourth derivation exist and is continues on $a \le x \le b$ then the error is
 - 1) $\frac{(b-a)}{180}h^4f^{(4)}(t)$

2) $(b-a)h^4f^{(4)}(t)$


3) $\frac{-(b-a)}{180}h^4f^{(4)}(t)$

- 4) $-(b-a)h^4f^{(4)}(t)$
- **42.** The Runge Kutta formula of the fourth order for the solution of the equation $\frac{dy}{dx} = f(x), \ y(x_0) = y_0 \text{ reduces to}$
 - 1) Euler's formula

2) Simpson's Rule of Integrals

3) Picards Formula

4) Taylor Series

1)
$$\frac{2\pi c}{\sqrt{1 - \frac{\omega_{mn}}{\omega}}}$$

$$\frac{c}{\sqrt{1 - \frac{\omega_{mn}}{\omega}}}$$

$$3) \qquad c\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}$$

4)
$$\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}$$

44. The dispersion of EM waves in plasma is

$$1) \qquad \sqrt{\omega_p^2 + (ck)^2}$$

$$2) \qquad \sqrt{\omega_p + (ck)}$$

3)
$$\sqrt{\omega_p^2 + (ck)}$$

4)
$$\sqrt{\omega_p + (ck)^2}$$

1)
$$P = \frac{2\pi}{3} \sqrt{\frac{\mu_o}{\varepsilon_o}} \left(\frac{l}{\lambda}\right)^2 \frac{I_o^2}{2}$$

2)
$$P = \frac{2\pi}{3} \sqrt{\frac{\mu_o}{\varepsilon_o}} \left(\frac{l}{\lambda}\right)^2 \frac{I_o}{2}$$

3)
$$P = \frac{2\pi}{3} \sqrt{\frac{\mu_o}{\varepsilon_o}} \left(\frac{l}{\lambda}\right) \frac{I_o^2}{2}$$

4)
$$P = \frac{2\pi}{3} \sqrt{\frac{\mu_o}{\varepsilon_o}} \left(\frac{\lambda}{l}\right)^2 \frac{I_o^2}{2}$$

46. A classical charged particle moving with frequency
$$\omega$$
 in a circular orbit of radius 'a' centered at origin in the *x-y* plane, emits electromagnetic radiation. At points $(b, 0, 0)$ and $(0, 0, b)$ where b>>a, the electromagnetic waves are,

- 1) circularly polarized and elliptically polarized respectively
- 2) plane polarized and elliptically polarized respectively
- 3) plane polarized and circularly polarized respectively
- 4) circularly polarized and plane polarized respectively

47. The spin orbit energy is a consequence of

10

1)
$$[c\vec{\alpha} \cdot p + \beta mc^2] \psi = E \psi$$

2)
$$[c\vec{\alpha} \cdot p + \beta mc^2 + V(r)]\psi = E\psi$$

3)
$$[c\vec{\alpha} \cdot p + \beta mc^2 + V(r)]\psi = 0$$
 4)
$$[c\vec{\alpha} \cdot p + V(r)]\psi = E\psi$$

4)
$$[c\vec{\alpha} \cdot p + V(r)]\psi = E\psi$$

H

- 49. A Carnot engine uses a paramagnetic substance as its working substance. The equation of state is $M = \frac{nDH}{T}$ where M is magnetization, H is the magnetic field, n is the number of moles, D is a constant determined by the type of substance, and T is the temperature. The efficiency of the Carnot engine is
 - 1) $\frac{T_c}{T_h}$

 $2) \qquad \frac{T_h - T_c}{T_h}$

 $3) \qquad \frac{T_h - 2T_c}{T_h}$

- $4) \qquad \frac{{T_c}^2 T_h}{T_h}$
- 50. For water vapour, $u_0=0$. Each molecule has six degrees of freedom in both the vapour and liquid phases. The latent heat of vaporization for water is 40700 J/mole and as it vaporizes, it expands. The average work done per molecule in this expansion is pv=kT. The specific heat of liquid water is 75.3 J/(mole K). The molar mass of water is 18 g/mole. Use this information to calculate the average energy of a water molecule (in eV) for water vapor at $100^{\circ}\mathrm{C}$
 - 1) 0.096 eV

2) 1 eV

0.5 eV

- 4) 0.7 eV
- **51.** Imagine an organism that lives in a hydrothermal vent where the temperature is 80°C and the salinity is 4% by number of ions. If the organism's body fluids have a salinity of 1%, what is the osmotic pressure across in membranes separating this organism's body fluids from its environment?
 - 1) $4.9 \times 10^6 \text{ Pa}$

2) $9.4 \times 10^6 \, \text{Pa}$

3) $3.5 \times 10^6 \text{ Pa}$

- 4) $4.9 \times 10^2 \text{ Pa}$
- **52.** Identify, which one of the following can act as an inverse transducer
 - 1) Electrical resistance potentiometer
- 2) LVDT
- 3) Capacitive transducer
- 4) Piezoelectric crystals
- **53.** The temperature transducers exhibit nonlinear behavior; the order of nonlinearity (highest to lowest) is
 - 1) Thermocouples, RTD, Thermistors
- 2) Thermistors, Thermocouples, RTD
- 3) RTD, Thermocouples, Thermistors
- 4) Thermistors, RTD, Thermocouples
- **54.** In an LVDT, the core is made up of a
 - 1) non-magnetic material
 - 2) a solid ferro-electric material
 - 3) high permeability, nickel-iron hydrogen annealed material in order to Produce low harmonics, low null voltage & high sensitivity
 - 4) non-magnetic material with low permeability

55.	A transition between two electronic levels results in a radiation that falls in the,				
	1)	Infra-red and visible region	2)	Visible or ultra violet region	
	3)	Microwave region	4)	All the above	
56.	A t	three level laser system has E_1 :	= 0 e l	V and E_2 = 1 eV , E_3 = 3 eV and	
	A_{32} is.	$=7 \times 10^7 \text{ s}^{-1}, A_{31} = 10^7 \text{ S}^{-1}, A_{21} = 10^7 \text{ S}^{-1}$	s^{-1} .	The spontaneous lifetime of level 3	
	1)	$1.5\!\times\!10^{-7}s$	2)	$1.09 \times 10^{-8} s$	
	3)	$0.25\! imes\!10^{-8}s$	4)	$1.25\! imes\!10^{-8}s$	
57 .	. If the rotational constant of a molecule in the upper and lower vibrational states are considered equal, the band head is observed in			apper and lower vibrational states are	
	1)	P-branch	2)	Q-branch	
	3)	R-branch	4)	Not observed	
58. The pure rotational bands arise due to the transition between				ition between	
	1)	Same electronic and vibrational level	\mathbf{s}		
	2) Different electronic and vibrational levels				
	3)	Same electronic levels only			
	4)	Same vibrational levels only			
59.	Which of the following molecules will show Raman spectra?			an spectra?	
	1)	N_2	2)	HCl	
	3)	O_2	4)	All the above	
60.	When J and K represents the total angular momentum and its projection along the symmetry axis of a rigid symmetric top molecule, the selection rule for the rotational transitions are				
	1)	$\Delta J = +1, \ \Delta K = 0$	2)	$\Delta J = -1, \ \Delta K = 0$	
	3)	$\Delta J = \pm 1, \ \Delta K = 0$	4)	$\Delta J = \pm 1, \ \Delta K = \pm 1$	
61.	Whi	ch of the molecule show rotational spec	ctrum	?	
	1)	H_{2}	2)	O_2	

Rotational Raman selection rule $\Delta J=\pm 2$ is due to which of the following **62.**

Polarizability ellipsoid is unsymmetrical 1)

 $^{16}\,\mathrm{O} - ^{17}\mathrm{O}$

3)

- 2) Polarizability ellipsoid is 2 fold symmetric
- 3) Polarizability ellipsoid is 3 fold symmetric
- 4) Polarizability ellipsoid is 4 fold symmetric

4)

CO

63.	The de Broglie wavelength associated with an electron of mass m and accelerated by a	L
	potential V is	

1)
$$\frac{h}{\sqrt{2meV}}$$

$$2) \qquad \frac{\sqrt{2meV}}{h}$$

3)
$$\frac{h}{2meV}$$

4)
$$\frac{2meV}{h}$$

64. The energy of X-ray photon is about 8.2 keV. The wavelength is

1) 1.512 Å

2) 1.5414 Å

3) $1.712 \,\text{Å}$

4) 0.812 Å

65. The ratio between the amplitude scattered by an atom to the amplitude scattered by an electron is called

1) structure factor

- 2) phase factor
- 3) atomic scattering factor
- 4) intensity of scattering

66. In a mono-atomic cubic crystal, the distance between the two neighboring atoms is $\frac{\sqrt{3}a}{4}$, then the crystal is belongs to what type of cubic system?

1) Simple cubic

2) BCC

3) FCC

4) Diamond cubic

67. The effective mass of a Bloch electron is defined as

1)
$$\frac{1}{m^*} = \frac{1 \partial^2 \in_K}{\hbar^2 \partial K^2}$$

$$(2) \qquad \left(\frac{1}{m^*}\right)^2 = \frac{1\partial^2 \in_K}{\hbar^2 \partial K^2}$$

3)
$$\frac{1}{m^*} = \left[\frac{1 \partial^2 \in_K}{\hbar^2 \partial K^2} \right]^2$$

4)
$$\frac{1}{m^*} = \left[\frac{1 \, \partial^2 \in_K}{\hbar^2 \partial K^2} \right]^{1/2}$$

68. When more number of phonons participate in the collision at high temperatures

- 1) It reduces mean free path and hence conductivity
- 2) It increases mean free path and hence conductivity
- 3) It reduces mean free path but conductivity increases
- 4) It increases mean free path but reduces conductivity

69.	The non-zero quadrupole moment of deuteron indicates, that the g_s of deuteron is						
	1) A mixture of the triplet state 3S_1 and the singlet state 1S_1						
	2)	2) A mixture of the triplet state ${}^3\mathrm{S}_1$ and ${}^3\mathrm{D}_1$					
	3)	Triplet state ${}^3\mathrm{S}_1$					
	4)	Triplet state $^3\mathrm{D}_1$					
70.	The shell model scheme of ¹¹ B, with proton and neutron levels respectively is,						
	1)	$(1s_{1/2})^2(1p_{3/2})^3;(1s_{1/2})^2(1p_{3/2})^4$	2)	$(1s_{1/2})^2(1p_{3/2})^4;(1s_{1/2})^2(1p_{3/2})^3$			
	3)	$(1s_{1/2})^2(1p_{3/2})^4;(1s_{1/2})^2(1d_{3/2})^3$	4)	$(1s_{1/2})^2(1p_{3/2})^3;(1s_{1/2})^2(1d_{3/2})^4$			
71.	The half-life of ^{259}Fm is 1.5s. The decay constant is						
	1)	$10.462 \ s^{-1}$	2)	$15.462 \ s^{-1}$			
	3)	$0.462 \ s^{-1}$	4)	$1.462 \ s^{-1}$			
72.	The	The existence of the neutrino was postulated in order to explain					
	1)	α decay	2)	γ emission			
	3)	fission	4)	β decay			
73.	The decay constant of $^{90}\mathrm{Sr}$ is $7.83 \times 10^{-10} s^{-1}$. The half-life is						
	1)	$83 \times 10^{-10} \mathrm{sec}$	2)	28 years			
	3)	678 min	4)	45 hours			
74.	Hov	w much energy in MeV would have to	be sup	oplied to a nucleus of $^{236}_{~~92}U$ in order to			
	split it into two identical fragments $^{118}_{46}Pd$. The mass of $^{236}_{92}U$ is 236.045568 u and						
	the mass of $^{118}_{\ 46}Pd$ is 117.91906 u						
	1)	$193~{ m MeV}$	2)	$236~\mathrm{MeV}$			
	3)	118 MeV	4)	$100~{ m MeV}$			
75.	If the mass of the reactants is larger than the mass of the products, the reaction is said to be						
	1)	Exoergic reaction	2)	Endoergic reaction			
	3)	Elastic scattering	4)	None of these			

ROUGH WORK

ROUGH WORK