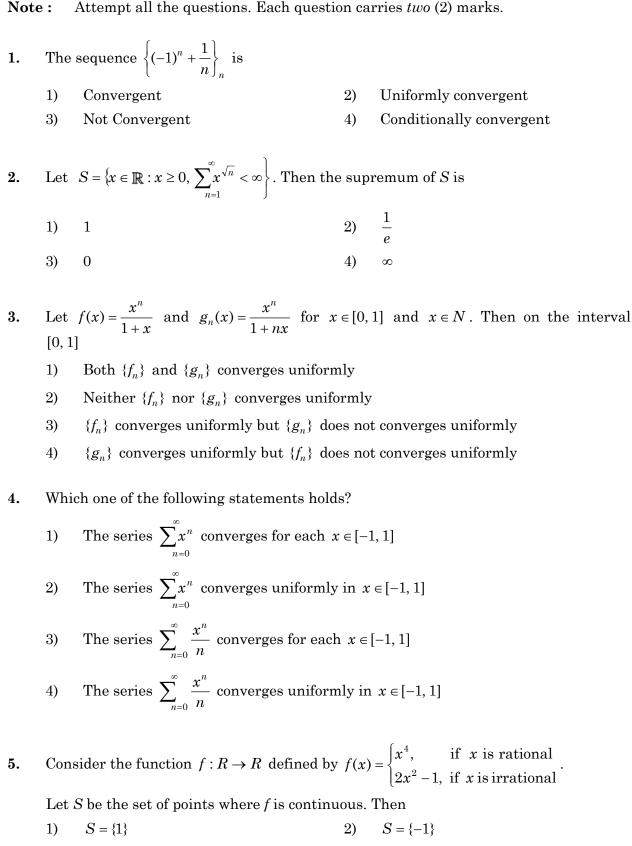
PAPER – III

MATHEMATICAL SCIENCES



3) $S = \{-1, 1\}$ 4) $S = \phi$

G

Let $S = \left\{\frac{1}{n} : n \in N\right\} \cup \{0\}$ and $T = \left\{n + \frac{1}{n}; n \in N\right\}$ be the subsets of the metric space R 6. with the usual metric. Then S is complete but not T2) T is complete but not S1) both T and S are complete neither T nor S is complete 3) 4) $f:[0,1] \rightarrow R$ 7. Let and $g:[0,1] \rightarrow R$ be two functions defined by $f(x) = \begin{cases} \frac{1}{n}, \text{ if } x = \frac{1}{n}, n \in N \\ 0, \text{ otherwise} \end{cases} \text{ and } g(x) = \begin{cases} n, \text{ if } x = \frac{1}{n}, n \in N \\ 0, \text{ otherwise} \end{cases}.$ Then Both f and g are Riemann integrable 1) 2) f is Riemann integrable but not g g is Riemann integrable but not f3) Neither *f* nor *g* is Riemann integrable 4) Let \overline{E} is the set of point of closure of *E* 8. \overline{E} is closed \overline{E} is open 1) 2) \overline{E} is null set \overline{E} is not closed 3) 4) The power series $\sum_{n=0}^{\infty} \frac{[2+(-1)^n]^n}{3^n} x^n$ converges 9. Only for x = 0For all $x \in \mathbb{R}$ 1) 2) 3) Only for -1 < x < 1Only for $-1 < x \le 1$ 4) 10. $\lim_{x \to 1} \frac{\sqrt{x^2 + 3 - 2\sqrt{x}}}{x^2 - 1}$ $-\frac{1}{4}$ 1) 2) -13) 1 4) 0 Find reduced row-echelon form which is row-equivalent to the matrix $\begin{bmatrix} 0 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$ 11. 1) $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$ 2) $\begin{pmatrix} 0 & 1 & 3 \\ 1 & 0 & -2 \end{pmatrix}$

3)
$$\begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & -1 \end{pmatrix}$$
 4) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \end{pmatrix}$

M1703

G

12. If *M* is a 7×5 matrix of rank 3 and *N* is a 5×7 matrix of rank 5, then rank (*MN*) is

- 1) 5 2) 3
- 3) 2 4) 1

13. Let M be a skew symmetric, orthogonal real matrix. The only possible eigenvalues

- 1) (-1, 1) 2) (-i, i)
- 3) 0 4) (1, i)

14. Consider the matrix
$$A = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 7 \\ 0 & 0 & 0 \end{bmatrix}$$
. Then

- 1) dim col(A) = 1 2) dim Null (A) = 2
- 3) rank (A) = 3 4) rank (A) = 2

15. Let $T \in L(R^2)$ be defined by $T\begin{pmatrix}a\\-b\end{pmatrix} = \begin{pmatrix}b\\-a\end{pmatrix}$ for all $\begin{pmatrix}a\\b\end{pmatrix} \in R^2$. Then which one of the following is false?

- 1) T is surjective
- 2) $\dim(null(T)) = 0$
- 3) The map $F: \mathbb{R}^2 \to \mathbb{R}^2$ given by F(x, y) = (x + y, x + 1) is not linear
- 4) T is not surjective
- **16.** Which of the following is diagonalizable?

1)	$\begin{bmatrix} 2 & 1 & -1 \\ 1 & -3 & 2 \\ -1 & 2 & 0 \end{bmatrix}$	2)	$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$
3)	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 6 \end{bmatrix}$	4)	$\begin{bmatrix} 4 & 1 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

17. If
$$T: R^2 \to R^3 \ni T(x+y) = (x+y, 0, x-y)$$

- 1) T is linear 2) $N(T) \neq 0$
- 3) T is a bijection 4) N(T) = 3

18. Dimension of the vector space of $m \times n$ matrices when trace is zero is

1) n(n-1) 2) n^2

3)
$$n^2 + 1$$
 4) $n^2 - 1$

19. The number of linearly independent eigenvectors of matrix

 $\begin{bmatrix}
 2 & 2 & 0 & 0 \\
 2 & 1 & 0 & 0 \\
 0 & 0 & 3 & 0 \\
 0 & 0 & 1 & 4
 \end{bmatrix}$

 is

 1)
 1
 2)
 2

3) 3 4) 4

20. The angle of rotation of $f(z) = z^2$ at $z_0 = 2 + i$

1) $\tan^{-1}\left(\frac{1}{2}\right)$ 2) $\tan^{-1}\left(\frac{3}{4}\right)$ 3) $\tan^{-1}(0)$ 4) $\tan^{-1}\left(\frac{1}{3}\right)$

21. Given
$$f(z) = \int_{c} \frac{z^2 - z + 1}{z - 1} dz$$
, where *C* is a circle $|z| = 1$

- 1) f(z) is analytic in and on C 2) $f(z) = \frac{1}{2\pi i}$
- 3) f(z) has simple poles 4) f(z) is not analytic in and on C

22. Value of $\int \frac{ds}{y}$ is with respect to the transformation $z = \frac{az+b}{cz+d}$ where a, b, c, d satisfies ad-bc=1 and $ds = \sqrt{dx^2 + dy^2}$ 1) One 2) Variant

3) Zero 4) Invariant

23. The expansion of
$$f(z) = \frac{z}{(z-1)(z-3)}$$
 in $0 < |z-1| < 2$ is

1) $-\frac{1}{2(z-1)} - \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{z-1}{2}\right)^n$ 2) $\sum_{n=0}^{\infty} \frac{2^n - 1}{2^n} Z^{n-1}$ 3) $\frac{1}{2z} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} - \frac{1}{4} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$ 4) $-\frac{1}{2(z-1)} - \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n$

24.	Let	$\gamma(t) = e^{it}, \ 0 \le t \le 2\pi$		
	1)	$\int_{\gamma} \sin\left(\frac{1}{z}\right) dz = 0$	2)	$\int_{\gamma} \sin^2 \left(\frac{1}{z}\right) dz = 1$
	3)	$\int_{\gamma} \sin\frac{1}{z} dz = 2\pi i$	4)	$\int_{\gamma} \sin^2 \left(\frac{1}{z}\right) dz = 2\pi i$
25.	If <i>f</i>	is an entire function such that $f(z) \rightarrow c$	o as 2	$z \rightarrow \infty$ then
	1)	f has a residue at $z = 0$		
	2)	<i>f</i> has a simple pole at $z = \infty$		
	3)	<i>f</i> has an essential singularity at $z = \infty$	ø	
	4)	<i>f</i> has a pole at $z = \infty$ but need not be	simpl	le
26.	Let	G be a group of order 231. The number	r of el	ements of order 11 in G is
	1)	10	2)	12
	3)	11	4)	2
27.		ylow 3-subgroup of a group of order 12		rder
	1)	3	2)	4
	3)	12	4)	8
28.	The	e number of homomorphism from $z_{10^5}{ m t}$	o z ₁₀₀	are
	1)	100	2)	200
	3)	30	4)	40
29.	Hov	v many positive integers not exceeding	1000	are divisible by 7 or 11?
	1)	142	2)	90
	3)	220	4)	12
90	/TT1		_	
30.		e remainder when 9 ¹⁰ is divided by 11 i		9
	1)	1	2)	2
	3)	5	4)	0
31.	The	primitive root mod18 is	—.	
	1)	3	2)	5
	3)	6	4)	9

32. Let $X = \{1, 2, 3, 4, 5\}$ and $\tau = \{X, \Phi, \{2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 3, 4\}\}$ then the τ -exterior of $\{3\}$ is

1)	{2}	2)	$\{2, 3\}$
3)	{2, 4}	4)	Φ

- **33.** A discrete space *X* is separable iff *X* is
 - 1)Uncountable2)Countable3)Finite4)Infinite
- **34.** Let τ be the topology on N which consist of Φ and all subsets of N of the form

 $E_n = \{n, n+1, n+2, \ldots\}$ where $\mathit{n\varepsilon}N$, then the accumulation points of set A is

1) $A' = \{1, 2, 3, \dots, 34, 35, 36\}$ 2) $A' = \{1\}$ 3) Φ 4) N

35. Consider the topology $\tau = \{X, \Phi, \{x\}, \{z, w\}, \{x, z, w\}, \{y, z, w, u\}\}$ on $X = \{x, y, z, w, u\}$ then the number of components of X is

1)	1	2)	2
3)	3	4)	4

36. Let $f: X \to Y$ and $g: X \to Y$ be continuous functions from a topological space X into a Hausdorff space Y. Then $A = \{x: f(x) = g(x)\}$ is

- 1) closed subset of X 2) open subset of X
- 3) not a closed subset of X 4) not a open subset of X

37. Every projection $\pi_i : X \to X_i$ on a product space $X = \prod X_i$ is

- 1) Only continuous 2) Bi-continuous
- 3) Only open 4) Neither continuous nor open

38. The projection map $\Pi_1 : X \times Y \to X$ is a closed map if

- 1) X is compact 2) Y is compact
- 3) X is connected 4) Y is connected
- **39.** Bernoulli's differential equation is given by
 - 1) $\frac{dy}{dx} + P(x)y = Q(x)y^{n}$ 3) $\frac{dy}{dx} + P(x)y = Q(x)y^{2}$ 4) $\frac{dy}{dx} + P(x)y = Q(x)$

The initial value problem $\frac{dy}{dt} = y^{\frac{1}{3}}$, $y(t_0) = 0$ has 40. a unique solution two solutions 1) 2) 3) solution does not exist 4) at least three solutions

The general solution of the equation $\sin x \, dx + \frac{dy}{\sqrt{y}} = 0$ is **41.**

- $2\sqrt{y} + \cos x = c$ 1)
- 2) $2\sqrt{y} \cos x = c$ 4) $\sin x + \cos x = \sqrt{y}$ 3) $2\sqrt{y} = \sin x$

The complete integral of the PDE $z^2 = pqxy$ is 42.

1)
$$z = bx^{1/a}y^a$$
 2) $z = bx^{1/a}y^{1/a}$

3)
$$z = bx^a y^{1/a}$$
 4) $z = bx^a y^a$

The canonical form of the PDE $u_{xx} + x^2 u_{yy} = 0$ is 43.

1)
$$u_{\alpha\alpha} + \alpha^2 u_{\beta\beta} = 0$$
 2) $u_{\alpha\alpha} + u_{\beta\beta} = 0$

3)
$$u_{\alpha\alpha} + \alpha^2 u_{\beta\beta} = -u_{\alpha}/(2\alpha)$$
 4) $u_{\alpha\alpha} + \alpha^2{}_{\beta\beta} = u_{\alpha}/(2\alpha)$

Using the transformation u = W / y in the PDE $xu_x = u + yu_y$, the transformed **44**. equation has a solution of the form W =

1)
$$f(x / y)$$
 2) $f(x + y)$

3)
$$f(x-y)$$
 4) $f(xy)$

Find the particular integral for $(\Delta^2 + 2\Delta + 1)u_n = 3x$ **45**.

1)
$$3x + 8$$
 2) $3x - 6$

 3) $3x - 3$
 4) $3x$

The Lagrange interpolating polynomial for the data 46.

		i	x_i	${\mathcal Y}_i$	
		0	0	1	
		1	1	3	
		2	2	7	
1)	$x^2 - x + 1$			2)	$x^2 + x + 1$
3)	<i>x</i> +1			4)	$x^{2} - 1$

47. The Lagrange interpolating polynomial for

i	x_i	${\mathcal Y}_i$
0	0	10
1	2	13
2	4	14

1) $10x^{2} + 2x - \frac{1}{4}$ 3) $10x^{2} + \frac{1}{2}x + \frac{1}{4}$ 4) $10x^{2} - \frac{1}{4}x + \frac{1}{2}$

48. The plane curve of fixed perimeter and maximum area is

1)	A circle	2)	A rectangle
3)	A square	4)	An oval

49. For spherical pendulum, where the spherical bob is constrained to move on a sphere

- 1) Then the potential energy is $mgr\cos\theta$
- 2) Then the potential energy is $mgr\sin\theta$
- 3) Then the potential energy is $-mgr\cos\theta$
- 4) Then the potential energy is $-mgr\sin\theta$
- **50.** The path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity is

1) The equation of the path is
$$\begin{aligned} x &= b(\phi - \sin \phi) \\ y &= b(1 - \cos \phi) \end{aligned}$$

- 2) A straight line
- 3) A rectangle
- 4) A square
- **51.** Consider the integral $\int_{0}^{1} y^{2} dx \le c \int_{0}^{1} y'^{2} dx$ for all 'y' there exist y(0) = y(1) = 0. Then the value of the smallest constant *c* is
 - 1) π^2 2) 1
 - 3) $\frac{1}{\pi^2}$ 4) -1

52. The solution of the integral equation $S = \int_{0}^{s} \frac{g(t)}{(s-t)^{1/2}} dt$ is

1)
$$g(t) = \frac{2t^{1/2}}{\pi}$$

2) $g(t) = \frac{3t^{1/2}}{\pi}$
3) $g(t) = \frac{t^2}{\pi}$
4) $g(t) = -\frac{t^2}{\pi}$

53. The resolvent kernel of integral equation $\phi(x) = \sin x + 2 \int_{0}^{x} e^{x-t} \phi(t) dt$ is

1)
$$e^{2(x-t)}$$
 2) $e^{3(x-t)}$

3)
$$e^{(x-t)}$$
 4) $e^{(x+t)}$

54. Given the homogeneous integral equation $\phi(x) = \lambda \int_{1}^{2} \left(x\xi + \frac{1}{x\xi} \right) \phi(\xi) d\xi$

- 1) Not a Fredholm integral equation
- 2) The eigen function of the system is $\lambda^2 + 13\lambda + 6 = 0$
- 3) The required eigen values are $\lambda_1 = \frac{1}{2} [17 + \sqrt{265}] = 6.639$ and $\lambda_2 = \frac{1}{2} [17 \sqrt{265}] = 0.3606$
- 4) The eigen values are 0.037 and 3.3259

55. The principal moment of inertia for a homogeneous sphere of radius R and mass M is

1)
$$\frac{3}{5}MR^2$$
 2) $\frac{1}{2}MR^2$

3)
$$\frac{2}{5}MR^2$$
 4) $\frac{3}{2}MR^2$

56. A frame of reference in which law of inertia holds

- 1) Non-Newtonian frame of reference
- 2) Accelerated frame of reference
- 3) Newtonian frame of reference
- 4) Galilean frame of reference

57. The point of support of a simple pendulum moves on an ellipse fixed in the same plane with the parametric equation $x = a \cos \omega t$, $y = a \sin \omega t$, $\omega = \text{constant}$. The Lagrange equation of motion of the bob for small oscillations is $\ddot{\theta} + \frac{g\theta}{l}F(t) = \frac{aw^2}{l}\cos \omega t$. Then the value of the function F(t) is

1)
$$1 + \frac{bw^2}{g} \sin \omega t$$

2) $1 - \frac{bw^2}{g} \cos \omega t$
3) $\frac{bw^2}{g} \cos \omega t$
4) $\frac{bw^2}{g} \sin \omega t$

58. In any system of particles, suppose we do not assume that the internal force come in pairs. Then the fact that the sum of internal force is zero follows from

- 1) Newton's Second law 2) Conservation of angular momentum
- 3) Conservation of energy 4) Principle of virtual energy
- **59.** In spherical pendulum, a small bob of mass m is constrained to move on a smooth spherical surface, of radius R, R being the length of the pendulum, the equation of motion is
 - 1) $mgR\cos^2\theta = 0$ 2) $\ddot{\theta} mR^2\cos^2\theta\dot{\phi}^2 = 0$

3)
$$mR^2 \sin^2 \theta \dot{\phi}^2 = \text{constant}$$
 4) $mR^2 \cos^2 \theta \dot{\phi}^2 = \text{constant}$

60. A continuous random variable X has the density function $f(x) = \frac{c}{1+x^2}$, $-\infty < x < \infty$ then the value of c is

1)	$-\frac{1}{\pi}$	2)	$\frac{2}{\pi}$
3)	$\frac{1}{\pi}$	4)	$\frac{-2}{\pi}$

61. Out of 800 families with 4 children each, how many families would be expected to have 2 boys and 2 girls. Assume equal probabilities for boys and girls

1)	750	2)	550
3)	300	4)	700

62. A problem in statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently?

1)
$$\frac{1}{2}$$
 2) $\frac{29}{32}$

3)
$$\frac{3}{4}$$
 4) $\frac{1}{4}$

63. The probability that John hits a target is $\frac{1}{2}$. He fixes 6 times. Find the probability that he hits the target exactly 2 times.

1)
$$\frac{15}{2^6}$$
 2) $\frac{7}{2^6}$
3) $\frac{5}{2^6}$ 4) $\frac{13}{2^6}$

64. If X has the probability density $f(x) = ke^{-3x}$, x > 0 find k

- 1) -4 2) 4
- 3) -3 4) 3

65. If X follows $B\left(3,\frac{1}{3}\right)$ and Y follows $B\left(5,\frac{1}{3}\right)$ find $P(X+Y\geq1)$ 1) $1+\left(\frac{2}{3}\right)^8$ 2) $1-\left(\frac{2}{3}\right)^8$ 3) $1+\left(\frac{3}{4}\right)^8$ 4) $1-\left(\frac{3}{4}\right)^8$

66. 3 mangoes and 3 apples are in a box. If fruits are chosen at random, the probability that one is a mango and the other is an apple, is

1)	$\frac{3}{5}$	2)	$\frac{5}{6}$
3)	$\frac{1}{36}$	4)	$\frac{3}{7}$

67. If A and B are tow events, the probability that exactly one of them occurs is given by

- 1) $P(A) + P(B) 2P(A \cap B)$ 2) $P(A \cap \overline{B}) + P(\overline{A} \cap B)$
- 3) $P(A \cup B) P(A \cap B)$ 4) $P(\overline{A}) + P(\overline{B}) 2P(\overline{A} \cap \overline{B})$

68. A die was rolled 30 times with the results shown below :

Number of spots	1	2	3	4	5	6
Frequency	1	4	9	9	2	5

If a chi-square goodness of fit test is used to test the hypothesis that the die is fair at a significance level of $\alpha = 0.05$, then the value of the chi-square statistic and the decision reached are

- 1) 11.6; reject hypothesis 2) 11.6; accept hypothesis
- 3) 22.1; reject hypothesis 4) 22.1: accept hypothesis

- **69.** Suppose a frequency distribution is skewed with a median of \$75 and a mode of \$80. Which of the following is a possible value for the mean of distribution?
 - 1) \$86 2) \$91
 - 3) \$64 4) \$75

70. A firm wishes to estimate with an error of not more than 0.03 and a level or confidence of 98%, the proportion of consumers that prefers its brand of household detergent. Sales reports indicate that about 0.20 of all consumers prefer the firm's brand. What is the requisite sample size?

- 1) 965 2) 975
- 3) 985 4) 995
- 71. The chi-square goodness of fit is based on
 - 1) multinational distribution
 - 2) hypergeometric distribution
 - 3) the assumption that the character under study is normal
 - 4) the assumption that the character under study is exponential

72. The maximum value of z = 2x + 3y subject to the constraints $x + y \le 30$, $y \ge 3$, $0 \le y \le 12$, $x - y \ge 0$ and $0 \le x \le 20$ is

1)	11	2)	72
3)	33	4)	36

73. Non degenerate basic solution of the system of equations x + 2y + z = 4, 2x + y + 5z = 5 are

- 1) (2, 1, 0), (5, 0, -1) 2) (5, 0, -1), (0, 5/3, 2/3)
- 3) (2, 1, 0), (0, 5/3, 2/3) (4) (2, 1, 0), (0, 5/3, 3/2)
- 74. A branch of Punjab National Bank has only one typist. Since the typing work varies in length, the typing rate is randomly distributed approximating a Poisson distribution with mean service rate of 8 letters per hour. The letters arrive at a rate of 5 per hour during the entire 8-hour work day. If the computer is valued at Rs.1.50 per hour, find the average idle time cost of the computer per day
 - 1)
 Rs. 4.20
 2)
 Rs. 4.30

 3)
 Rs. 4.40
 4)
 Rs. 4.50
- 75. A fair die is tossed repeatedly. If X_n denotes the maximum of the numbers occurring in the first *n* tosses. Find the initial state probability distribution
 - 1) $\left(\frac{1}{6}\frac{2}{6}\frac{3}{6}\frac{4}{6}\frac{5}{6}\frac{6}{6}\right)$ 2) $\left(\frac{1}{6}0000\right)$ 3) $\left(\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\frac{1}{6}\right)$ 4) $\left(\frac{1}{6}1111\right)$

ROUGH WORK

ROUGH WORK