PAPER – II

MATHEMATICAL SCIENCES

Note : Attempt all the questions. Each question carries *two* (2) marks.

1. Composite number *n* is ———.

- 1) a prime number and n > 1
- 2) non-prime number and n < 1
- 3) non-prime number and n > 1
- 4) a prime number and n < 1

2. A function f(x) has no jump discontinuity at x = a if ______

- 1) f(a+) = f(a-) = f(a)
- 2) $f(a+) \neq f(a-)$
- 3) $f(a+) \neq f(a)$
- 4) $f(a+) = f(a-) \neq f(a)$

3. A subset *S* of a vector space *V* satisfying V = L(S) is a basis if ______.

- 1) S is linearly dependent
- 2) S is linearly independent
- 3) V is a field
- 4) S is a field

4. The value of the determinant
$$\begin{vmatrix} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \end{vmatrix}$$
 is
1) abc
2) $a^2b^2c^2$
3) $bc+ca+ab$
4) zero

5. If dim W = m, dim V = n and $W \subset V$ then dim(V/W) is —

1)	m + n	2)	n-m
3)	m-n	4)	mn

- 6. The value of $\lim_{z\to 0} \frac{\overline{z}}{\overline{z}}$ is
 - 1) 0
 - 2) 1
 - 3) 1/2
 - 4) Limit does not exist

7. The fixed points of the bilinear transformation $w = \frac{z}{2-z}$ are

- 1) 0, 0
- 2) 0, 1
- 3) 0, 1/2
- 4) 1, 1/2

8. The primitive roots *modulo* 19 is ———.

- 1) 18
- 2) 6
- 3) 5
- 4) 12
- **9.** In the ring of even integers 2Z, the ideal $I = \langle 4 \rangle$ is
 - 1) Integral domain
 - 2) Principal ideal
 - 3) Maximal but not prime
 - 4) Maximal and prime

10. If D is an integral domain and D[x] is a principal ideal domain, then D becomes a

- 1) Ring
- 2) Field
- 3) Integral domain
- 4) Ideal

11. Any infinite subset *A* of a discrete topological space *X* is

- 1) compact
- 2) locally compact
- 3) not compact
- 4) sequentially compact

12. The general solution of
$$\frac{dy}{dx} = \frac{y}{x} + \frac{1}{\sin\left(\frac{y}{x}\right)}$$
 is

- 1) $y = x \ arc \ \cos(x c)$
- 2) $y = x \operatorname{arc} \sin(x c)$
- 3) $y = x \operatorname{arc} \tan(x c)$
- 4) $y = x \sin(x c)$
- **13.** Which of the following is elliptic?
 - 1) Laplace equation
 - 2) Wave equation
 - 3) Heat equation
 - 4) $u_{xx} + 2u_{xy} 4u_{xy} = 0$
- 14. The complete integral of the PDE pq = 1 is
 - $1) \qquad z = ax + 1/a y + c$
 - $2) \qquad z = ax + 1/a y$
 - $3) \qquad z = ax + y + c$
 - 4) z = x + 1/a y + c

- 15. For the fastest rate of convergence of the method $x_{n-1} = \frac{ax_n x_n^2 + 1}{a + x_n}$. The value of *a* is (Given α is exact root)
 - 1) $a = \frac{1}{\alpha^2}$
2) $a = \frac{2}{\alpha^3}$
3) $a = \frac{1}{\alpha^3}$

4)
$$a = \frac{3}{\alpha^2}$$

- **16.** If Euler's characteristic equation $\frac{\partial F}{\partial y} \frac{d}{dx} \left(\frac{\partial F}{\partial y} \right) = 0$ vanishes identically, then the indefinite integral $\int F(x, y, y') dx$ can be evaluated as a function of
 - 1) x only
 - 2) *x* and *y*
 - 3) y only
 - 4) *F*, *x* and *y*
- 17. The integral *I* has strong minimum if
 - 1) The arc AB of the arc of the integration Γ_e , contains no point conjugate to either A or B
 - 2) The arc AB of the arc of integration Γ_e , contains point conjugate to either A or B
 - 3) The arc AB of the arc of integration Γ_e , contains point conjugate to both A or B
 - 4) The arc AB of the arc of the integration Γ_e , contains no point conjugate to neither A nor B

- **18.** Degree of freedom is defined as
 - 1) The minimum number of independent coordinates required to specify the system
 - 2) The maximum number of independent coordinates required to specify the system
 - 3) The minimum number of dependent coordinates required to specify the system
 - 4) The maximum number of dependent coordinates required to specify the system
- 19. Non-holonomic constraints are
 - 1) The constraints that can be expressed as equation form
 - 2) The constraints that cannot be expressed as equation form
 - 3) Equation of constraints that contain time as explicit variable
 - 4) Equation of constraints that does not contain time as explicit variable
- **20.** Lagrange's bracket is
 - 1) Canonical invariant
 - 2) Canonical variant
 - 3) Non-invariant
 - 4) Euler's invariant
- 21. Two dice are thrown. Find the probability that the total of the numbers on the top face is 9.
 - 1) $\frac{3}{9}$ 2) $\frac{4}{9}$ 3) $\frac{5}{36}$ 4) $\frac{4}{36}$

22. A non-null persistent and a periodic state is called

- 1) Regular
- 2) Irregular
- 3) Ergodic
- 4) Non-Ergodic
- **23.** The variance of maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a Poisson distribution on the basis of a sample of size *n* is
 - 1) λ
 - 2) $\frac{n}{\lambda}$
 - 3) $\frac{\lambda}{n}$
 - 4) $\frac{\lambda}{n^2}$
- 24. Buses arrive for cleaning at a central depot in groups of five every hour on the hour. The buses are serviced in random order, one at a time. Each bus requires 11 min to service completely and it leaves the depot as soon as it is clean. Then the average number of buses in the depot is
 - 1) 2
 - 2) 2.5
 - 3) 2.75
 - 4) 3

25. Subset of *R* which is a neighborhood of 3 is

- 1) [3, 6] 2) [3, 6)
- 3) (2,4) (3,6)

26. The series $\sum_{r=1}^{\alpha} (-1)^{r-1}$

- 1) Oscillates finitely
- 2) Divergent
- 3) Convergent
- 4) Oscillates infinitely

- 1) convergent to 0
- 2) divergent
- 3) convergent to 1
- 4) convergent to $\frac{1}{2}$

28. The radius of convergence of the series $\frac{x+2}{1} + \frac{(x+2)^2}{2} + \dots + \frac{(x+2)^n}{n} + \dots$ 1) 1 2) ∞

3) 0 4) $\frac{1}{2}$

 \mathbf{F}

- 29. The product of two orthogonal matrices is orthogonal and that the inverse of an orthogonal matrix is
 - 1) Symmetric
 - 2) Orthogonal
 - 3) Skew-symmetric
 - 4) Hermitian
- **30.** Let V be an *n*-dimensional vector space and let $T: V \to V$ be a linear map such that null(T) = range(T). Then
 - 1) n is odd
 - 2) n is even
 - 3) n is neither odd or even
 - 4) *n* is not defined
- 31. Every square matrix satisfies its own characteristic equation. This is
 - 1) Cauchy's theorem
 - 2) Cayley-Hamilton theorem
 - 3) Eigen value theorem
 - 4) Sylow's theorem
- **32.** A function $f(z) = \operatorname{Re}(z)$ is
 - 1) analytic
 - 2) nowhere differentiable
 - 3) continuous
 - 4) discontinuous
- **33.** The real part of $\exp(\exp i\theta)$ is
 - 1) $e^{\cos\theta}$
 - 2) $e^{\cos\theta}\sin(\sin\theta)$
 - 3) $e^{\cos\theta}\cos(\cos\theta)$
 - 4) $e^{\cos\theta}\cos(\sin\theta)$

34. If $\pi(N)$ denotes the number of prime numbers less than or equal to N then $\pi(6) =$

- 1) 2
- 2) 5
- 3) 1
- 4) 4

35. Which of the following statement is wrong?

- 1) Every subspace of discrete space is also discrete
- 2) Every subspace of an indiscrete space is indiscrete
- 3) Every non-empty open subset of an indiscrete space X is dense in X
- 4) Every non-empty open subset of an indiscrete space X is not dense in X
- **36.** Let X = N be equipped with the topology generated by the basis consisting of sets $A_n = \{n, n+1, n+2 \dots\}, n \in N$ then X is
 - 1) Compact and connected
 - 2) Hausdorff and compact
 - 3) Hausdorff and connected
 - 4) Neither compact nor connected
- **37.** Every convergent sequence in a Hausdorff space has
 - 1) exactly two different limit points
 - 2) no limit point
 - 3) a unique limit point
 - 4) more than one limit point
- **38.** Let X be a topological space with finitely many connected components: Then each connected components is
 - 1) closed in X
 - 2) open in X
 - 3) neither open nor closed in X
 - 4) both open and closed in X

39. The PDE $(1 + x^2)u_{xx} + (1 + y^2)u_{yy} + xu_x + yu_y = 0$ is of type

- 1) Parabolic
- 2) Elliptic
- 3) Hyperbolic
- 4) Laplace
- **40.** The PDE $x^2(y-1)z_{xx} x(y^2-1)z_{xy} + y(y^2-1)z_{yy} + z_x = 0$ is hyperbolic in the entire *xy*-plane except along
 - 1) x-axis
 - 2) y-axis
 - 3) a line parallel to *y* axis
 - 4) a line parallel to *x* axis
- 41. In Newton-Cotes formula, if f(x) is interpolated at equally spaced nodes by a polynomial of degree one, then it represents —_____.
 - 1) Trapezoidal rule
 - 2) Simpson rule
 - 3) Three-eight rule
 - 4) Booles rule
- **42.** By Newton's method $f(x) = x^5 x^3 + 3$ and if $x_n = 1$ then x_{n+1} is

1)
$$-\frac{1}{2}$$

2) $\frac{1}{2}$
3) $\frac{3}{2}$
4) $-\frac{3}{2}$

43. The solution of Fredholm integral equation $y(x) = x + e^x - \int_0^1 x t y(t) dt$

- 1) $y(x) = e^x$
- $2) \qquad y(x) = e^{-x}$
- 3) y(x) = x
- $4) \qquad y(x) = x + 1$

44. Consider the Fredholm integral equation of the first kind $\frac{1}{4}e^x = \int_{0}^{\frac{1}{4}} e^{x-t} y(t) dt$. The solution is

- 1) $y(x) = e^x$
- 2) $y(x) = \cos x$
- 3) $y(x) = \sin x$
- 4) $y(x) = e^{-x}$

45. Any solution of homogeneous Volterra integral equation of the second kind $\phi(x) - \lambda \int_{0}^{x} K(x \cdot y) \phi(x) \, dy = 0$ in L_2 -space is

- 1) Necessarily a zero function
- 2) Necessarily a non-zero function
- 3) Absolute function
- 4) Constant function

46. The eigen value *I* of the following Fredholm integral equation $y(x) = I \int_{0}^{1} x^{2} t y(t) dt$ is

- 1) 2
- 2) 2
- 3) 4
- 4) -4

- **47.** From a pack of 52 cards, one card is drawn at random. Find the probability of getting a queen.
 - 1) $\frac{1}{13}$
 - 2
 - 2) $\frac{2}{13}$
 - 3) $\frac{10}{21}$
 - 4) $\frac{12}{21}$

48. Poisson distribution is a limiting case of

- 1) Uniform distribution
- 2) Exponential distribution
- 3) Geometric distribution
- 4) Binomial distribution
- **49.** If *X* is uniformly distributed over (0, 10) find P(X < 2)
 - 1) $\frac{3}{5}$
 - 2) $\frac{2}{5}$
 - i
 - 3) $\frac{1}{5}$
 - 4) $\frac{4}{5}$
- **50.** If the one-step transition probability does not depend on the step (ie.,) $p_{ij}(n-1, n) = p_{ij}(m-1, m)$ the Markov chain is called a
 - 1) Non-homogeneous
 - 2) Homogeneous
 - 3) Irreducible
 - 4) Reducible

ROUGH WORK

ROUGH WORK