	PART-A	
	Non-programmable calculators are allowed.	
-	No additional sheets will be provided. Rough work can be done in the end of the booklet.	e space provided at
U.	Hand over the OMR answer sh	eet at the end of the
5.	Answers are to be marked on the OMR answer sheet following the it there upon.	mak
	question, there are four answers and the answers are to be indicated of alphabets viz., A, B, C and D. The question paper consists of Part 'A' and Part 'B'.	ed with capital letters
3.	The question paper consists of Objective Type questions of an	rk each For each
	Write your Hall Ticket Number on the OMR Answer Sheet and in the the question paper.	
1. 2.	All questions carry equal marks. Write your Hall Ticket Number on the OMB Arrays of	
	octions for the candidates:	
	2.00 4.00 1 101	Marks: 75
	/Day: 23.02.2013, Saturday : 2.00-4.00 PM	
)ata		
	Ph. D in Earth & Space Sciences	
	ENTRANCE EXAMINATION 2013-2014	
	University of Hyderabad	
•	Hall Ticket No:	

	(~)	L	(B)	2 E	(C)	4 E		(D)	25 E	
2. Two	steel orce,	wires of the sar then the strains	ne rad produ	ius ha	ive th	eir leng two wir	ths in the	e ratio	of 1:2.	If they are stretched by the
	(A)	1:2	(B)	2:1		(C)	1:1		(D)	1:4
3. For H	looke	s law to hold a	20d +h							

- 3. For Hooke's law to hold good, the intermolecular distance must be ______ as compared to the equilibrium distance
 - (A) Much more (B) Zero (C) Much less (D) Approximately same

•	4. Energy in	n a streto	ched wire is							
	(A) (C)		f load ´ strain ´ strain		alf of stro		rain			
. 5	5. Which of	the follo	wing have higl	nest elast	icity?					
	(A)	Steel	(B)	Copper		(C)			(D)	Aluminium
6	. A liquid do	oes not v	wet the surface	of a solid	d if the a	ngle of	contact is	;		
•	(A)	Zero	(B)	An acute	one	(C)	45°		(D)	An obtuse one
7	. The pressu	ıre just l	oelow the men	iscus of w	ater			•		
	(A) (C)		er than just ab as just above i				ls less thai			: spheric pressure.
		A. A li atn B. Near C. Near D. Nea	of the Earth's ttle less than h nosphere the surface of the outer bou ar the center o	alfway be the Earth ndary of t f the Eartl	etween the name of	sphere	•			er boundary of the
	(A)Bre		(B) Conglom		(C) Do			(D) Sł		amorphisms
ia.	Comp cause sunli	ared to ght to b	dull and rougl e	rock su	rfaces, sl	niny ar	nd smooth	rock s	surface	es are most likely to
	(A) Re	flected	(B) Refra	cted	(C) Sca	ttered		(D) At	sorbe	d
11.	The ed	quatorial	radius of the I	arth is ap	proxima	tely				
	(A) 6	i37 km	(B) 6370 km	(C) 63	700 km	(D) 86	571 km			
12.	At whi	ch locati	on would an o	bserver fi	nd the gr	eatest	force due	to the	Earth'	s gravity?
	(A) N	lorth pol	le	(B) Equ	uator	(C) Lo	ndon	(D) Ne	w York	(
13.	Which	(B)The Hemisp	ent provides the sun has a sphe altitude of Poli phere trails photogra	aris(N. Sta	pe ir) chang	es with	the obse	rver's la	atitude	e in the Northern
		(D) The	length of noor	ntime sha	dows cha	inge th	roughout	the yea	ar patr ar	1

14.	the worthern Hernisphere may be determined by measuring the								
	(A) apparent diameter of Po (C) distance to the Sun			aris (B) altitude of Polaris					
	(C) dis	tance to the Sui	n 、		(D) apparent diameter of the Sun				
15.	The true shap	e of the Earth is	s best desc	s a					
	(A) per (C) slig	rfect sphere (B htly oblate sphe	3) perfect e ere (D) hig	ellipse ghly ecc	entric e	llipse			
16. T	he locus of a poi (A) x+y=0	nt, equidistant f (B) x-y=0	rom the po	oints (2, (C) 2x-		(-3,2) is (D) 2x+y=0			
17. D	omain of the rea	l valued functio	n f(x)=e ^x is	5					
	(A) Z	(B) N	(C) R		(D) Doe	es not exist			
18. TI	ne cube root of 3	8+17√5 is							
	(A) 2+V5	(B) 2-1	V5	(C) √5-2	!	(D) 2+2√5			
19. Th	ne equation to th	e straight line tl	hrough (2,-	-3) and	perpend	licular to x – a	ıxis is		
	(A)X=-3	(B) x=-2		(C) y=-3		(D) x=2	•		
20.	The equation of (A) (0,0)	of the circle with (B) (1,1)	centre (2, (C) (1,2)	3) and	radius 1 (D) (2,3	.3 is always sa)	itisfied by the point		
21. The	e discontinuity se	eparating Earth's	s upper an	d lower	crust is	termed as			
	(A) Moho	(B)Guttenberg			(D)Conr				
22. Wł	nich of the follow	ving is a Mars ex	ploration r	rover?					
	(A) Brightness	(B)Curiosity	(C)Eager	(D)Disco	very			
23. The	e largest mass ex	tinction on the I	Earth took	place a	t the fol	lowing geoloફ	gical boundary		
	(A) Cretaceous- (C)Ordovician-S		(B)Permo (D)Jurrass				·		
24. The	tropical cyclone	s often follow th	ne direction	n of mo	vement	from			
	(A) South to No	rth (B) East	to West	. (0	C) West	to East	(D) North to South		

25. Which of the crystal systems has four crystallographic axes?									
(A) Monoclinic (B) triclinic (C) hexagonal (D) tetragonal								
	PART-B								
26. Potentia the liquid is	al energy of a molecule on the surface of a liquid is as compare to another molecule inside of								
(A)	More (B) Less (C) Both 'a' and 'b' (D) None of these								
27. Rain dro	ps are spherical because of								
(A)	Gravitational force (B) Surface tension								
(C)	Air resistance (D) Low viscosity of water								
28. Surface t	ension of liquid is independent of the								
(A)	Temperature of the liquid (B) Area of the liquid surface								
(C)	Nature of the liquid (D) Impurities present in the liquid								
29. Meniscus	of mercury in capillary is								
(A)	Concave (B) Convex (C) Plane (D) Cylindrical								
30. The perio	d of simple pendulum is doubled when								
(A)	Its length is doubled (B) Its length is halved								
(C)	The length is made four times (D) Mass of the bob is doubled								
31. If the leng	th of a simple pendulum is doubled keeping its amplitude constant its energy will be								
	Jnchanged (B) Doubled (C) Four times (D) Halved								
32. The unit o	f force constant is								
(A)	Nm (B) N/m (C) N/kg (D) Nkg								
33. Moment o	f inertia depends on								
(C) P	oistribution of particles (B) Mass osition of axis of rotation (D) All of these sions of angular momentum are								
(A) [I	$M^1 L^2 T^1$ (B) $[M^1 L^1 T^1]$ (C) $[M^1 L^1 T^2]$ (D) $[M^1 L^2 T^2]$								

35. The moment of inertia of a body does not depends upon									
(A)	Angular veloci	ty of a body	(B)	Axis o	of rotation	of the body			
(C)	The mass of th	e body	(D)	The d	istribution	of the body			
36. Momen	t of inertia depe	nds upon the							
(A)	Mass of the bo	dy	(B)	Distri	bution of i	mass of the bo	dy		
(C)	Position of axis	of rotation	(D)		f these		•		
37. If a gymnast, sitting on a rotating stool, with his arms outstretched, suddenly lowers his arms									
(A)		ocity decreases		(B)		ent of inertia d			
(C)	The angular vel	ocity remains cons	tant	(D)		lar momentum			
38. In a sono	meter wire, the	produced waves a	re						
(A)	Longitudinal	(B) Transverse,	statio	nary a	nd unpola	rised			
(C) T	ransverse, statio	nary and polarised					and polarized		
39. In a statio	onary wave, the	(C) Transverse, stationary and polarised (D) Transverse, progressive and polarized 39. In a stationary wave, the strain is maximum at the							
(A) Nodes (B) Antinodes									
1 (A)					Antinodes	i			
	lodes	e and the antinode		(B)			and antinodes		
(C) B	lodes etween the node		s	(B) (D)	Between a		and antinodes		
(C) Boundary (A) (B) (C) (D)	Nodes etween the node d to Earth's crust) less dense, co less dense, ho more dense, c	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose cooler, and compose	s elieved ed of m ed of le sed of	(B) (D) I to be nore ire ess iron more i	Between a		and antinodes		
(C) Both 40. Compare (A (B) (C) (D) 41. Which of	Nodes etween the node d to Earth's crust) less dense, co less dense, ho more dense, c	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose cooler, and compose	s elieved ed of med of le sed of sed of	(B) (D) I to be nore incess iron more i less iron dary?	Between a	any two nodes			
(C) Both 40. Compare (A) (B) (C) (D) (A) (A) (A) (C)	etween the node d to Earth's crust) less dense, co less dense, ho more dense, h more dense, co	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose cooler, and compose	s elieved ed of med of le sed of sed of boun- gent b	(B) (D) I to be nore incess iron more i less iron dary?	Between a	any two nodes	and antinodes (D) transform		
(C) Both 40. Compare (A) (B) (C) (D) (A) (A) (A) (C)	d to Earth's crust less dense, co less dense, ho more dense, h more dense, co the following is N novergent bound	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose cooler, and compose NOT a type of plate lary (B) diver	selieved ed of med of lessed of sed of sed of sed of sed of	(B) (D) I to be nore incess iron more i less iron dary?	Between a	any two nodes			
(C) Both 40. Compare (A) (B) (C) (D) 41. Which of (A) contact (A) The (A) The	d to Earth's crust less dense, co less dense, ho more dense, h more dense, co the following is N onvergent bound columinous porti	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose cooler, and compose NOT a type of plate lary (B) diver	selieved ed of med of lesed of sed of ed boun gent be known	(B) (D) I to be nore incess iron more i less iron dary? counda to geo	Between a	any two nodes			
(C) Both 40. Compare (A) (B) (C) (D) 41. Which of (A) contact (A) The (A) The 43. The lithosp	d to Earth's crust less dense, co less dense, ho more dense, h more dense, co the following is N onvergent bound columinous porti	e and the antinode t, Earth's core is be coler, and compose otter, and compose notter, and compose notter, and compose NOT a type of plate lary (B) diver ion of the Earth is ke	selieved ed of med of lesed of sed of ed boun gent be known	(B) (D) I to be nore incess iron more i less iron dary? counda to geo	Between a on iron on plogists as le ehave as	any two nodes			

(A) transform faults (B) explosive volcanic eruptions (C) the edges of the continents (D) the Mid-Ocean Ridge 45. At transform plate boundaries (A) Two plates slip horizontally past each other (B) Two plates move in opposite directions toward each other (C) Two plates move in opposite directions away from each other (D) Two plates are subducted beneath each other 46. A typical rate of plate motion is (A) 3 - 4 centimeters per year (B) 1 - 18 centimeters per year (C) 1 kilometer per year (D) 1,000 kilometers per year 47. Earthquakes may be caused by (A) movement of tectonic plates (B) motion along faults in Earth's crust (C) shifting of bedrock (D) all of these 48. Plate tectonics is (A) an hypothesis (B) a conjecture (C) a theory (D) the rawest of speculation 49. A subduction zone is most likely to be encountered (A) at a convergent plate boundary (B) at a divergent plate boundary (C) at a transform plate boundary (D) at a translational plate boundary 50. Petroleum is **NOT** a mineral because (A) It does not have a definite chemical composition (B) It does not have a crystalline structure (C) It is not a solid (D) All of these are reasons why petroleum is not a mineral 51. The silicon-oxygen tetrahedron is (A) The building block of the silicate minerals (B) composed of 4 oxygen atoms surrounding 1 silicon atom (C) composed of the two most abundant elements on Earth (D) all of these 52. Which of the following is **NOT** considered a physical property of minerals? (A) hardness (B) streak (C) silicate structure (D) luster 53. Select the statement about cleavage which is **NOT** correct (A) a plane along which crystals break easily (B) a plane that reflects light (C) it is well developed in all minerals (D) there may be more than one cleavage plane in some minerals

54. Atoms with either a positive or negative charge are called	
(A) isotopes (B) ions (C) elements (D) radioactive	
55. For a given mineral, the physical property which displays the greatest variation is	
A) color (B) luster (C) hardness (D) streak	
56. Muscovite is (A) a double chain silicate (B) a framework silicate (C) a sheet silicate (D) a single chain silicate	
57. In a syncline, all rock layers	
(A) dip toward the fold axis (B) dip away from the fold axis (C) have vertical dips (D) have horizontal dips 58. A fault is observed where the hanging wall is displaced upward relative to the foot	wall
(A) This is a normal fault (B) This is a reverse fault	
(C) This is a left-lateral strike-slip fault (D) This is a right-lateral strike-slip fault 59. A fault that displays mostly vertical displacement is	lt
(A) a dip-slip fault (B) a strike alim fault (C)	one of these
60. Strike-slip faults can also be	
(A) dip-slip faults (B) transform faults (C) anticlines (D) synclines	
61. Porosity is	
(A) the percentage of a rock's volume that is open space(B) the capacity of a rock to transmit fluid(C) the ability of a sediment to retard water(D) none of the above	
62. Seasons on Earth occur because of:	
 (A) Disproportionate distribution of land mass in northern and southern hemis (b) Tilt of the Earth's axis of rotation (c) Changes in the specific heat of water and land mass and the wind circulation consequence of the changes in the temperature (D) Changes in the circulation of Green house gases. 	
63. An aquifer is	
(A) a body of saturated rock or sediment through which water can move easily (B) a body of rock that retards flow of ground water (C) a body of rock that is impermeable (D) a body of rock containing water	

64. Which re	ock type bel	ow is likely to p	ossess the hig	hest porosity?		
(A) : 65. Which ro	sandstone ock type belo	(B) con ow is likely to po	glomerate ossess the hig	(C) s hest permeabili	iltsone ty?	(D) shal
(A) s	hale	(B) sandstone	(C) si	ltsone	(D) granite	
66. The decl	ine in the lev	el of the water	table around	a pumping well	is known as	
	he porosity he cone of d			eability gradient e of influence		
67. The max (A) 1	imum and m 1 and -29	inimum values (B) -29 a	of 16cosx+12 and 11	sinx-9 are (C) -11 and 29	9 (D) 29	9 and -11
68. If A = { 1, (A) {	3,5,8} and B 1,3,5,8}	= { 2,3,5 } then (B) { 2,3,		B) is (C) { 1,2,8 }	(D) { 2,5	5,8 }
69. The quad (A) I	rant contair	ing the point (- (B) II	7,0) is	(C) I and II	(D) No	one
70. Solution (A) (-2	of the equat 2,-3/2)U(-3/2	on Mod(2x+3) (2,1)	< 2 is (B) (-5/2,-1/2)	(C) (-3	3/2,-1)U(-1,2)	(D) None
71. If the ord (A) 3:	er of the ma	trix A is 2x3 and (B) 3 x 4	the order of	the matrix B is 2 (C) 4 x 3	2x4 then the orde (D) 2 x 3	er of (A ^T B) ^T i
72. If A+B =22 (A) 2	5 then (1+ta	nnA)(1+tanB)= (B) 1		(C) 2tanAtanB	(D) Non	e of these
73. Limit x → ∞	$\frac{x}{(4x^2+1)}$ -1					
(A) 4		(B) 1/4		(C) 0	(D) ∞	
74. If a polyno (A) $2x^3$	mial f(x) is d +x²-8x+6	ivided by (2x-3) (B) x ³ -2x ² -), the quotient +8x-6	is x ² +2x-1 and (C) 2x ³ -x ² +8x-6	remainder is 3 th (D) Nor	
75. If the lengt (A) 6	h of 3 sides	of a triangle are (B) 16	e 3, 4 and 5 th	en area of triang (C) 36	gle is (D) 256	