ENTRANCE EXAMINATION-2015 ## Ph. D. Chemistry | TIME: 2 HOURS | | MAXIMUM MARKS: 75 | | |---------------------|--|--------------------------|--| | | | | | | | | | | | HALL TICKET NUMBER: | | | | #### **INSTRUCTIONS** - 1. Write your **HALL TICKET NUMBER** in the space provided above and also in the **OMR** ANSWER SHEET given to you. - 2. Make sure that pages numbered from 1 14 (excluding 3 pages assigned for rough work) are present. - 3. There are 55 (Fifty five) multiple choice questions in this paper (15 in Part-A + 40 in Part-B). You are required to answer all questions of Part-A and maximum 15 questions from Part-B. If more than the required numbers of questions are answered only the first 15 questions of Part-B will be taken up for evaluation. - 4. Each questions of Part-A carries **ONE** mark only, whereas each question of Part-B carries **FOUR** marks. - 5. There is negative marking. Each wrong answer in Part-A carries -0.33 mark and in Part-B carries -1.32 marks. - 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it. - 7. Hand over the OMR answer sheet at the end of the examination to the Invigilator. - 8. In case of a tie, the marks obtained in the first 15 questions (PART-A) will be used to determine the order of merit. - 9. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet. - 10. Calculators are allowed. Cell phones are not allowed. - 11. Useful constants are provided at the beginning of PART-A in the question paper. - 12. OMRs without hall ticket number will not be evaluated and University shall not be held responsible. ### Useful constants: Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J s}$; Speed of light = $2.998 \times 10^8 \text{ m s}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J K}^{-1}$; Gas constant = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Charge of electron = $1.6 \times 10^{-19} \text{ C}$; 1 D = $3.336 \times 10^{-30} \text{ Cm}$; 1 bar = 10^5 Nm^{-2} ; RT/F (at 298.15 K) = 0.0257 V; 1 kcal/mol = 350 cm^{-1} . ### Part-A - 1. Which of the following compounds does not have a planar molecular configuration? - (A) $H_2C=CH_2$ (B) H₂C=C−C≡CH (C) $H_2C=C=CH_2$ (D) $H_2C=C=C=CH_2$ 2. The structural formula for vitamin C is shown below. Of the four hydroxyl groups, identified by circles, which is most acidic? (A) 1 (B) 2 (C)3 (D) 4 3. The major product in the following transformation is (B) (C) (D) 4. The product in the following transformation $$CH_2(CO_2Et)_2$$ $$\begin{array}{c} 1. EtONa \\ \hline 2. PhCH_2Br \\ 3. H^+, \triangle \end{array}$$ is (C) (D) .CO2Et - 5. Identify the naturally occurring amino acids, which are having two chiral centres: - (A) Lysine and Arginine (B) Serine and Phenylalanine (C) Leucine and Proline - (D) Threonine and Isoleucine - 6. The alloy Cu₃Au crystallizes in a cubic lattice with Cu at the face centers and Au at the corners. The number of formula unit/s of the alloy in each unit cell is - (A) 1 - (B) 2 - (C) 3 - (D) 4 - 7. Among octahedral Ti²⁺, V²⁺, Ni²⁺ and Cu²⁺ all are expected to show spin-only moments except for the following one which is expected to show both spin and orbital magnetic moments - (A) Ti^{2+} - (B) V^{2+} (C) Ni^{2+} (D) Cu^{2+} - 8. In tetragonally elongated high-spin [MnF₆]³⁻ the highest energy valence electron of the metal centre resides in - (A) d_{xz} orbital - (B) d_{z^2} orbital - (C) $d_{x^2-v^2}$ orbital - (D) d_{vz} orbital - 9. The carbonyl complex following 18-electron rule is - (A) $Cr(CO)_4$ (B) $Mn(CO)_5$ (C) $V(CO)_6$ - (D) Ti(CO)₇ | (A) 0 | (B) 1 | (C) 2 | (D) 3 | |--|-----------------------------|------------------|--| | | | | | | 12. If equal v solution is: | olumes of solu | tions with pH=2 | 2 and pH=7 are mixed, the pH of the resulting | | (A) 9.0 | (B) 5.0 | (C) 4.5 | (D) 2.3 | | 13. The cano | nical ensemble | is represented b | by a system with | | ` / | NVE. (B) cou uVT . (D con | | | | 14. Among th | ne following the | well-behaved | function is | | (A) $e^{-x}[0 \le (C) e^{- x }[-\infty)$ | | , , | $ \frac{-x}{-\infty} = x \le \infty n^{-1} x [-1 \le x \le 1] $ | | | | | | | 15. trans-Dic | hloroethene bel | ongs to the syn | nmetry point group | | $(A) C_{2v}$ | (B) C _{3v} | $(C) C_{2h}$ | (D) D_{2d} | (D) 6 10. The number of M-M bonds present in $Co_4(CO)_{12}$ is (C) 5 11. The number of degrees of freedom of water at its triple point is (B) 4 (A)3 **End of Part-A** ## Part B 16. A compound with the $C_5H_{12}O_2$ formula has strong infrared absorption in the region 3300 to 3400 cm⁻¹. The ¹H NMR spectrum has three singlets at δ 0.9, δ 3.45 and δ 3.2 ppm with the relative intensities 3:2:1, respectively. The ¹³C NMR spectrum shows three signals all at less than δ 100. Suggest a structure for this compound. - (A) Me O-Me Me CH_2OH Me CH_2OH (C) (D) - 17. The product of the following rearrangement reaction is (A) $$HO$$ CH_3 (B) O CH_3 (C) O CH_3 (D) 18. The missing reagents in the following transformation $$\begin{array}{c|c} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$ (C) $$\mathbf{X} = \bigcup_{\mathsf{B}(\mathsf{OH})_2}^{\mathsf{NO}_2} \mathsf{and} \ \mathbf{Y} = \bigcup_{\mathsf{B}(\mathsf{OH})_2}^{\mathsf{OCH}_3}$$ (D) $$X = \bigcup_{Br}^{NO_2} \text{ and } Y = \bigcup_{Br}^{OCH_3}$$ 19. Identify K, L, M and N from the following reaction sequence. (A) $$\mathbf{K} = PCC$$; $\mathbf{L} = EtMgBr$; $\mathbf{M} = PhCOMe$; $\mathbf{N} = (R)-BINAL-H$ (B) $$K = PCC$$; $L = EtMgBr$; $M = PhCOEt$; $N = (S)-BINAL-H$ (C) $$\mathbf{K} = \text{CrO}_3$$; $\mathbf{L} = \text{EtMgBr}$; $\mathbf{M} = \text{PhCOEt}$; $\mathbf{N} = (S) - \mathbf{BINAL} - \mathbf{H}$ (D) $$\mathbf{K} = PCC$$; $\mathbf{L} = EtMgBr$; $\mathbf{M} = PhCOEt$; $\mathbf{N} = LiAlH_4$ 20. The product obtained in the following transformation Me $$\frac{1. \triangle}{2. \bigcirc_{O} \bigcirc_{O}$$, AlCl₃ # 21. The final product of the following sequence of reactions is # 22. The product of the following reaction - 23. If the volume of a typical bacterial cell is $1.0 \, \mu m^3$, the number of hydrogen ions present in the bacterial cell at pH 7.0 is, approximately: - (A) 60 - (B) 6×10^2 - (C) 6×10^3 (D) 6×10^4 - 24. Identify W, X, Y and Z from the following reaction sequence. - 25. The most significant peaks in the mass spectrum of 3-hexanone will be seen at m/z values of: - (A) 100, 85, 71, 57 - (B) 100, 72, 71, 57 - (C) 100, 85, 71, 43 - (D) 100, 71, 57, 43 26. The product obtained in the following transformation is $$(A) \qquad \qquad (B) \qquad (B) \qquad (D) (D$$ 27. The final product of the following sequence of reactions is 28. The product expected in the following reaction - 29. A Trigonal-bipyramidal complex of formula $[M(L-L)A_2X]$ (A and X are unidentate ligands; L-L represents a bidentate ligand) can have - (A) 3 geometrical isomers and one of them will be optically active - (B) 4 geometrical isomers and two of them will be optically active - (C) 3 geometrical isomers and two of them will be optically active - (D) 4 geometrical isomers and one of them will be optically active - 30. The number of isomers for the trigonal bipyramidal molecule PF₃Cl₂ with a non zero dipole moment is - (A) 2 - **(B)** 1 - (C) 0 - (D) 3 - 31. The equilibrium constant (K) for the reaction $(CH_3)_2NH_2^+ + (CH_3)_3N \longrightarrow (CH_3)_2NH + (CH_3)_3NH^+$ is 960 at 25°C. If the proton affinity of dimethylamine is 930 kJ/mol, what is the proton affinity of trimethylamine? (R = 8.31 J/K mol and the entropy for proton transfer is approximately zero). - (A) 930 kJ/mol - (B) 947 kJ/mol - (C) 960 kJ/mol - (D) 977 kJ/mol - 32. The standard reduction potential E° for $Cd^{2+} + 2e^{-}$ Cd is -0.40 V. What is the value of pH (at $[Cd^{2+}] = 1$ M and pressure of H₂ is 1 bar) above which reduction of Cd^{2+} by H₂ to Cd metal will be spontaneous. - (A) 0 - (B) 2 - (C)4 - (D)6 | 55. The Russel-Saunders ground sta | ate term symbols for d' and d' ions are | |--|--| | (A) 3F_4 and 1S_0 respectively | (B) ${}^{1}S_{0}$ and ${}^{3}F_{4}$ respectively | | (C) ${}^4F_{9/2}$ and ${}^2D_{3/2}$ respectively | (D) ${}^4F_{9/2}$ and ${}^2D_{5/2}$ respectively | | that pond water is [1 ppm = 1g of (| 6 ppm. The amount of CaCO ₃ dissolved in 200 mL of CaCO ₃ in 10 ⁶ mL, atomic mass of Ca = 40] | | (A) $1.2 \times 10^{-4} \text{ g}$ (B) 1.2×10^{-3} | g (C) 2.1×10^{-3} g (D) 3.0×10^{-4} g | | 35. Using Wade's rule predict the st | ructure of Os ₅ (CO) ₁₆ | | (A) square pyramid (B) tr | gonal bipyramid | | (C) capped tetrahedron (D) by | atterfly shaped | | (A) Imidazole, Thiolate and Phenola | | | (C) Phenolate, Thiolate and Imidazo | le (D) Thiolate, Imidazole and Phenolate | | Excess sulphuric acid is added and take the acid in in the Excess sulphuric acid is acid in the Excess sulphuric | e (Na ₂ C ₂ O ₄) weighing 0.2856 g is dissolved in water. he resultant solution is titrated at 70°C, using 45.12 ml of overrun and the back titration is carried out with 1.74 ml ne molarity of the KMnO ₄ solution is | | (A) 0.01969 mmol/ml (B) 0. | 01969 mol/ml | | (C) 0.089784 mmol/ml (D) 2. | 32819 mmol/ml | | • | | | $[C_6H_6]$. The electron paramagnetic | ali metal ion leads to the formation of a radical anion resonance spectrum of the radical anion involving ogens will show a [I = ½ for Hydrogen atom] | | (A) Seven line pattern (B) Or | ne line pattern | | (C) Four line pattern (D) Si | x line pattern | - 39. Gaseous N₂O₅ when compressed display ionic character in the crystal lattice (NO₂⁺NO₃⁻). Which spectroscopic method can be employed to confirm this transformation? - (A) Nuclear magnetic resonance spectroscopy - (B) Electron paramagnetic resonance spectroscopy - (C) Vibrational spectroscopy - (D) Photoelectron spectroscopy - 40. A cell is set up as follows: Fe | Fe²⁺ $$(a = 0.1) \parallel \text{Cd}^{2+} (a = 0.001) \mid \text{Cd}$$ The voltage of the cell and the equilibrium constant of the cell reactions are, $[E_{Cd}^{0}]_{/Cd}^{2+} = -0.44 \text{ V}, E_{Fe}^{0}]_{/Fe}^{2+} = -0.40 \text{ V}, T = 298 \text{ K}]$ - (A) -0.02 V and 23 (B) +0.02 V and 23 (C) +0.04 V and 4.8 (D) -0.02 V and 4.8 - 41. In the compounds $Co_2(CO)_x$ and $H_\nu Cr(CO)_5$, the numbers x and y are respectively - (A) 8 and 2 - (B) 6 and 2 - (C) 8 and 1 - (D) 6 and 1 - 42. The molecules CH₃Cl, CCl₄, SO₂ and SiH₄ are - (A) symmetric, spherical, asymmetric and spherical tops - (B) spherical, spherical, symmetric and symmetric tops - (C) asymmetric, symmetric, asymmetric and symmetric tops - (D) spherical, symmetric, asymmetric and symmetric tops - 43. ¹⁹⁹Hg nucleus has a gyromagnetic ratio of 4.8154×10^{-7} rad T⁻¹ s⁻¹. The frequency at which ¹⁹⁹Hg will produce an NMR signal at a magnetic field of 1.5 Tesla is - (A) 5.42 MHz - (B) 9.81 GHz - (C) 10.93 MHz - (D) 11.42 MHz - 44. In a reversible isothermal expansion at 298 K, an ideal gas changes its volume from V to 2V. What is the change in the molar internal energy of the gas? - $(A) +2.27 \text{ kJ mol}^{-1}$ - (B) 0 J mol⁻¹ - $(C) +1.72 \text{ kJ mol}^{-1}$ - (D) $-2.27 \text{ kJ mol}^{-1}$ - 45. From fundamental equation dA = -SdT PdV, the Maxwell relation obtained is - (A) $\left(\frac{\partial S}{\partial P}\right)_T = \left(\frac{\partial V}{\partial S}\right)_V$ (B) $\left(\frac{\partial S}{\partial V}\right)_P = \left(\frac{\partial P}{\partial T}\right)_V$ - (C) $\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial P}{\partial S}\right)_{T}$ (D) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$ | 46. An element with atomic radius of 1.7 Å forms crystals with a face-centered lattice. In an X-ray diffraction experiment using Cu K_{α} radiation (λ =1.54 Å), the first order diffraction from the (111) planes will occur at a 20 value of : | | | | | | |--|---------------------------------|---------------------------------|---------------------------------|--|--| | (A) 13.0° | (B) 16.8 ⁰ | (C) 32.2^0 | (D) 64.9 ⁰ | | | | 47. At 25 0 C the values of Λ^{∞} are: sodium benzoate, 82.5×10^{-4} S m ² /mol: hydrochloric acid, 426.2×10^{-4} S m ² /mol: sodium chloride, 126.5×10^{-4} S m ² /mol. The Λ^{∞} for benzoic acid will be | | | | | | | (A) 217.2 S m ² /mol | (B) 299.7 S m ² /mol | (C) 382.2 S m ² /mol | (D) 343.7 S m ² /mol | | | | 48. The value of the vibrational partition function for $I_2(\tilde{\nu}=208~\text{cm}^{-1})$ at 300 K is given by (hc/kT=0.0483 cm at 298 K) | | | | | | | (A) 0.633 | (B) 1.58 | (C) 1.37 | (D) 0.73 | | | | 49. 0.1135 gm of TNT releases 410 calories of heat upon explosion at 27 $^{\circ}$ C. One mole of TNT produces three moles of CO and two moles of N ₂ on explosion. When one mole of TNT explodes at 27 $^{\circ}$ C, the Δ H is | | | | | | | (A) -817 kcal | (B) -612 kcal | (C) -534 kcal | (D) -1022 kcal | | | | 50. Normalization constant of the wave function $\psi = \cos(n\pi x/a_0)$ $[0 \le x \le a_0; n = 0,1,2,]$ is | | | | | | | (A) a_0 (B) $\sqrt{2}$ | $2/a_0$ (C) $\sqrt{a_0/2}$ | (D) $2/a_0$ | | | | | 51. The spacing between the lines in the microwave spectrum of $^{39}K^{127}I$ is 3634 MHz. The bond length of $^{39}K^{127}I$ is | | | | | | | (A) ~305 pm | (B) ~600 pm | (C) ~380 pm | (D) ~410 pm | | | | 52. The value of $\langle x^2 \rangle$ for the ground state of a harmonic oscillator with mass μ and force constant k is | | | | | | | (A) $\hbar/2\sqrt{\mu k}$ | (B) $2\hbar/\sqrt{\mu k}$ | (C) $\hbar/2\mu k$ | (D) $2\hbar/\mu k$ | | | - 53. The fundamental and first overtone in the IR spectrum of $^{12}\mathrm{C}^{16}\mathrm{O}$ occur at 2143 and 4269 cm⁻¹, respectively. The values of $\bar{\nu}_e$ and $\bar{\nu}_e\bar{x}_e$ for $^{12}\mathrm{C}^{16}\mathrm{O}$ are - (A) 3000 and 100 cm⁻¹ - (B) 2143 and 13 cm⁻¹ - (C) 2169 and 13 cm⁻¹ - (D) 4260 and 130 cm⁻¹ - 54. A sample of polystyrene is composed of a series of fractions of different sized molecules as shown in the table below | Fraction | Weight Fraction | Molecular Weight | |----------|-----------------|------------------| | A | 0.10 | 12000 | | В | 0.19 | 21000 | | С | 0.24 | 35000 | | D | 0.18 | 49000 | The weight average molecular weight of this polymer sample is - (A) 32300 - (B) 117000 - (C) 51760 - (D) 22410 - 55. A drug is known to be ineffective after 30% decomposition. The original concentration of drug sample was 500 units/mL. After 20 months, the concentration decreased to 420 units/mL. Assuming that the decomposition follows a first-order kinetics, the expiry time of this drug will be: - (A) 79.4 months - (B) 40.9 months - (C) 80.5 months - (D) 49.3 months