	_		•			
Hall Ticket Number:		1				

Department of Animal Sciences

ENTRANCE EXAMINATION, February 2014 Ph. D Animal Sciences

Time: 2 hours

Maximum Marks: 75

INSTRUCTIONS: PLEASE READ BEFORE ANSWERING

- > Enter your hall ticket number on this sheet and the answer (OMR) sheet.
- Answers have to be marked on the OMR answer sheet following the instructions provided there upon.
- Hand over the OMR answer sheet at the end of the examination to the Invigilator.
- > All questions carry one mark each. Answer all, or as many as you can.
- > 0.33 mark will be deducted for every wrong answer.
- > There are a total of 14 pages in this question paper. Answer sheet (OMR) will be provided separately. Check this before you start answering.
- > The question paper consists of part A and part B. The marks obtained in Part A will be taken in consideration in case of a tie i.e., when more than one student gets equal marks, to prepare the merit list.

PART "A"

1. Which one of the following is NOT an anabolic product of nitrogen assimilation?								
A)	Glutamate	B)	Ure	a				
C)	Aspartate	D)	Glu	tamine				
2. Ch	emical reaction that can be best predic	ted fo	r the	direction	is	in and other time to the		
A)	ΔS		B)	ΔΗ				
C)	ΔG		D)	ΔE	•			

3. Identify the odd one

- A) Syncytiotrophoblasts and human chorionic gonadotropin
- B) Sertoli cells and dihydrotestosterone
- C) Granulosa cells and estradiol
- D) Chromaffin cells and adrenaline

4. Lactational amenorrhea is

- A) Polycystic ovarian syndrome
- B) Temporary postnatal infertility
- C) Causal factor for mastitis
- D) Induced lactation

5. Pyrosequencing is especially useful for

- A) Sequencing repetitive DNA regions in multiple individuals
- B) Sequencing highly condensed DNA regions
- C) Sequencing short DNA regions in multiple individuals
- D) Sequencing DNA regions with high AT content

6. Choose the mismatch

- A) Cri-du-chat syndrome 5p
- B) Patau Syndrome 47, + 13
- C) Retinoblastoma 13q, 14
- D) Edwards syndrome 47, 21

7. CD40 ligand is seen only on

A) Macrophages

B) Cytotoxic T cells

C) Helper T cells

D) Dendritic cells

8. Neutrophil chemotaxis is mediated by

A) IL-8

B) E-selectin

C) Interferon

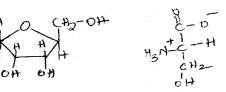
D) IgM

9. Which one of the following pairs of molecules could NOT be able to form the hydrogen bond with each other?

A)

H3N-C-H

B)


H N H

C)

CH3-CH2-CH2-CO-

D)

10. Detection of odors (the sense of smell) is mediated by

A) Ungated Na⁺ channels

B) Gated cation channels

C) Gated anionic channels

- D) G-protein coupled receptors
- 11. What is the effect of increased palmitoleate levels on the viscosity of the *E. coli* outer membrane at a constant temperature?
 - A) Decreased viscosity

- B) Increased viscosity
- C) Viscosity remains unaltered
- D) Initially decreases and then increases
- 12. Attachment of multiple copies of a small, highly conserved protein called———— to a substrate protein targets the substrate protein for degradation.
 - A) Cyclin

B) Tubulin

C) Ubiquitin

D) Actin

13. Male breast cancer is primarily associated with mutations in

A) BRCA1

B) BRCA2

C) NF1

D) RET

14. 7	The common intermediate of	f carbohyd	rate,	protein and lipid metabolism is
(A)	Ammonia		B)	Pyruvic acid
C)	Acetyl coA		D)	phosphoglyceraldehyde
15. I	n relation to natural selectio	n, evolutio	n is	
A)	Process		B)	Mechanism
(C)	Outcome		D)	Purpose
16. V enter	Which of the following viruse ing the cell?	s CANNO	T tra	nslate their genome immediately after
A)	+ve sense RNA viruses		B)	-ve sense RNA viruses
C)	Both		D)	Phages
17. W	hat are the components of c	eramide?		
A)	Sphingosine + fatty acids		B)	Sphingosine + phosphoric acid
C)	Sphingosine + fatty a phosphoric acid	acids +	D)	Sphingosine + Glycerol
18. A buffer	t physiological pH, a protring capacity.	ein rich iı	1	amino acid provides maximum
A)	Lysine		B)	Histidine
C)	Aspartic acid		D)	Leucine
19. Ho	ow many moles of Ca(NO ₃) ₂	are there i	n 75 r	nl of 0.25M solution?
A)	0.00333 mol		B)	0.0188 mol
C)	3.33 mol		D)	18.8 mol

20. W	/hat is the [OH] of a solution with a pH	I of 9.	.0?
(A)	1 X 10 ⁻⁵ M	B)	1 X 10 ⁻⁹ M
C)	1 X 10 ⁻⁶ M	D)	1 X 10 ⁻⁴ M
21. C	hoose the nucleoside analogue used as a	ntica	nncer drug?
A)	Methotrexate	B)	6-mercaptopurine
C)	Vinblastine	D)	Cytosine arabinoside
22. Di	ifference between paracentric and perio	centr	ic inversion is
A)	The placement of centromere in the inversion	B)	The involvement of centromeres in the inversion
C)	The number of genes involved in the inversion	D)	The position of the inversion on the chromosome
23. Po	ox virus replicates in		
A)	Cytoplasm	B)	Nucleus
C)	Both	D)	Intercellular space
24. Tv	wo-month old breast-fed baby contains	mate	ernal in circulation
A)	IgA	B)	IgM
C)	IgG	D)	IgE
	idows peak hairline in humans is dom widows peak hairline, what is his or he		t to non-widows peak hairline. If a person otype?
A)	Must be homozygous dominant	B)	Must be homozygous recessive
C)	Must be heterozygous	D)	Either heterozygous or homozygous dominant

PART "B"

26. If an X-linked recessive disorder is in Hardy-Weinberg equilibrium and the incidence in males equals 1 in 100, then the expected incidence of affected homozygous females would be

A)	1 in 1000	B)	1 in 4000						
C)	1 in 10000	D)	1 in 40000						
27. Ig	g idiotypes are found in the								
A)	Constant region of the heavy chain	B)	Constant region of the light chain						
C)	Hinge region	D)	Variable region of both heavy and light chains						
28. Which of the following is a major neuron specific phosphoprotein?									
A)	Synapsin I		B) Ca ⁺⁺ calmodulin						
C)	GAP-43		D) Calpain						
29. W	hich of the following co-transporter is	a syn	aporter?						
A)	Glucose-Na ⁺ co-transporter of intestinal microvilli	B)	Na ⁺ - H ⁺ co-transporter of fibroblast plasma membrane						
C)	H ⁺ - sucrose co-transporter of plant vacuoles	D)	Na ⁺ - Ca ²⁺ co-transporter found in cardiac muscles						
30. TI	he presence of anti-insulin receptor and	tibodi	ies in humans causes						
	Proceedings of the control of the co								
A)	Type A insulin resistance	B)	Type B insulin resistance						
C)	Type 1 diabetes	D)	Type 2 diabetes						
31. W	hich of the following is caused by trinu	ıcleot	ide (triplet) expansion?						
			(<u>F</u>) <u>F</u>						
A)	Cystic fibrosis	[.] B)	Duchenne muscular dystrophy						

C) Huntington disease

D) Osteogenesis imperfecta

32. T	The alpha-helical structure of globula wing technique?	ir pro	oteins is best determined by which of the
A)	UV absorption spectroscopy	B)	Electron spectroscopy
C)	Fluorescence spectroscopy	D)	Circular dichroism
33. T	hick filamental skeletal muscles are co	mpos	ed of φ .
A)	Actin	B)	Myosin
C)	Troponin	D)	Tropomyosin
34. T	ype I hypersensitivity can be blocked b	у	
A)	Histamine	B)	Sodium cromoglycate
C)	Interleukin 5	D)	IgA
35. Se	ecretory IgA protects external mucosal	surfa	ace by
A)	Triggering mast cells	B)	Recruiting phagocytic cells
C)	Preventing microbial adherence to the mucosa	D)	Binding to the epithelial cells
36. W	hich one of the following hormones is	consid	dered non-functional?
A)	Somatostatin	B)	γT_3
C)	T_4	D)	Somatomammotropin
37. W	hy is the Tm of DNA monitored using	the al	bsorption of UV light at 260 nm?
A)	GC base pairs absorb more UV than AT base pairs	B)	AT Base pairs absorb more UV than GC base pairs

D) Double stranded DNA absorbs more UV than single stranded DNA

C) Single stranded DNA absorbs more UV than double stranded DNA

	Which one of the cellular organellopment?	es ha	s got major role in reproduction and
A)	Golgi complex	B)	Lysosomes
C)	Peroxisomes	D)	Mitochondria
	The sequence element on the DNA nerase II in cakaryotes is known as the		plate which is first recognized by RNA
A)	5' UTR	B)	Enhancer
(C)	TATA box	D)	TATAAT Box
40. G	els of plasmid DNA preparations show	a ma	jor band of
A)	Linear DNA	B)	Supercoiled DNA
C)	Coiled DNA	D)	Chromosomal DNA
	ropagation of a regenerative action properties of the following?	poten	tial along an axon can be accelerated by
A)	By increasing the transmembrane resistance	B)	By decreasing the axoplasmic resistance
C)	By narrowing the axon diameter	D)	Shortened intermodal lengths
42. W	hich of the following statement is NO	Г cori	rect?
A)	Both α and β tubulin bind GTP	B)	β tubulin hydrolyzes the bound GTP to GDP
C)	α tubulin hydrolyzes the bound GTP to GDP	D)	GTP bound to a tubulin is never hydrolyzed or exchanged with free nucleotides
43. T	he folding of sheet of cells, the migration	on of	cells and cell death all are mechanisms of
A)	Pattern formation	B)	Morphogenesis
C)	Differentiation	.D)	Growth

	44. Adult l	human b	one grows
		•	
	•		
•			

A)	Only at the extreme ends of epiphysis	B)	Only in the center – diaphysis				
C)	Throughout its length	D)	Only at growth plates between epiphysis and diaphysis				
45. W	hat do plasma membrane extension an	d acr	osome reaction have in common?				
A)	Both involve movement driven by actin polymerization	B)	Both involve release of hydrolytic enzyme				
C)	Discharge of calcium ions from the cell	D)	Acting sequestering protein thymosin binds to G actin and blocks polymerization				
46. In	clusion bodies known as 'Negri bodies'	are i	found in the infections of				
A)	Hepatitis C virus	B)	Foot and Mouth disease virus				
C)	HIV virus	D)	Rabies Virus				
47. W	hich of the following amino acids is NC	ОТ со	nverted to Acetyl coA upon metabolism?				
A)	Valine	B)	Tyrosine				
C)	Tryptophan	D)	Lysine				
	culture started with 4 cells and ended through?	with	256 cells. How many generations did the				
A)	5	B)	3				
C)	6	D)	8				
	he glycoprotein containing mucoid sub ocyte in an ovary is	ostano	ce that separates the granulosa cells from				
A)	Zona pellucida	B)	Ectodermin				
C)	Chorodin binding protein	D)	Ubiquitin				
			w · ·				

50. 11	ie following holds true-for single i	nicro.	KNA				
A)	Involved in translational arrest degradation of only one mRNA	&	B)	Involved in translational arrest & degradation of multiple mRNAs			
C)	Involved in only degradation of multiple mRNAs			Involved in degradation of ribosomal RNAs			
51. TI	ne maximum possible volume of ai	r whi	ich ca	n be taken during inspiration is called as			
A)	Tidal air volume		B)	Vital lung capacity			
C)	Complementary air volume		D)	Total lung capacity			
52. M	iracidium is a larval stage in the d	levelo	pme	nt of			
A)	Taenia solium		B)	Fasiola hepatica			
C)	Ascaris		D)	Echinococcus			
53. W	hich of the following is a non-spec	eific (s	systei	nic) autoimmune disease?			
A)	Hashinomoto's thyroiditis		B)	Pernicious anaemia			
C)	Systemic lupus erythematosus		D)	Myasthenia gravis			
	he condition in which one horn es the action of another hormone b			evated to pathologically high levels and to its receptor is referred to as			
A)	Hormone-receptor internalization		B)	Induced hormone-receptor activity			
C)	Specificity spill over action		D)	Hormone receptor cross aggregation			
55. Uı	rocortin is secreted by						
A)	Urinary bladder		B)	Kidney			

D) Liver

C) Brain

A)	A gonane	B)	A pregnane
C)	An esterase	D)	An androstane
57. 7	The undue tendency for closely linked er than undergo genetic randomization	d gene n is ter	es on a chromosome to remain associated rmerd as
A)	Tandem duplication	B)	Gene conversion
C)	Linkage disequilibrium	D)	Meiotic crossover
58. H	ILA-DR2 is a risk factor for		
A)	Multiple sclerosis	B)	Rheumatoid arthritis
C)	Myasthenia gravis	D)	Ankylosing arthritis
59. T	esticular descent is NOT influenced by	y	
A)	Antimullerian hormone	B)	Intra-abdominal pressure
C)	Androgens	D)	Inhibin
60. C he ce	hanges in ion permeability of membra ells. Which of the following would caus	ane of se hyp	a neuron alter the membrane potential of erpolarization?
A)	Increase in K ⁺ permeability	B)	Decrease in Cl permeability
C)	Increase in Na ⁺ permeability	D)	Decrease in K ⁺ permeability
1. Pl	atyhelminths are described as	•	
A)	Flatworms, triploblastic, acoelomates	B)	Flatworms, diploblastic, acoelomates
C)	Flatworms, diploblastic coelomates	D)	Flatworms, triploblastic, coelomates

56. A C_{19} -steroid formed by the addition of another methyl group to C_{10} is

6-11-

62.	Neoteny	in	axolotl larv	a is	the	phenomenon	where	it	ļ
-----	---------	----	--------------	------	-----	------------	-------	----	---

A)	Gains new tone of body muscles	B)	Metamorphoses in normal manner				
C)	Becomes sexually mature amd can reproduce but retains other systems in their larval state	D)	Prematurely retinas all the larval systems without any exception				
	hich of the following relatives of an itype?	individ	dual most likely to share a common HLA				
A)	Father	B)	Mother				
C)	Sister	D)	Son				
64. E	nhancer sequences are characterized b	y the	following means				
A)	DNAseI hypersensitivity, H3K4me2 and p300 binding	B)	DNAseI insensitivity, H3K4me2 and p300 binding				
C)	DNAseI hypersensitivity, H3K9me2 and p300 binding	D)	DNAseI insensitivity, H3K9me2 and p300 binding				
65. T	he term "Chromothripsis" refers to						
A)	Break of chromosomes during apoptosis	B)	Breakdown of chromosomes during cancer				
C)	Breakdown of chromosomes during stress	D)	Break of chromosomes during recombination				
	A culture medium on which only gra ounds <i>Staphylococcus aureus</i> colonies is		sitive organisms grow and a yellow halo				
A)	Selective medium	B)	Differential medium				
C)	Both	D)	Enrichment medium				
	latelet counts go down in the infections	s of					
A)	Chikungunya virus	B)	Chicken pox virus				
C)	Dengue virus	D)	Small pox virus				

A)	Vander waals interactions	B)	Hydrophobic interactions					
C)	Hydrogen bonds	D)	Conformational entropy					
	Which of the following microtubule is sembled and assembled states?	less	stable and exhibit little cycling between					
A)	Axonal microtubule	B)	Flagellar microtubule					
C)	Spindle microtubule	D)	Axonal, flagellar and spindle microtubules have same stability					
70. D	NA methylation is associated with							
A)	GT-AG	B)	CpG islands					
C)	CAAT box	D)	TATA Box					
71. Pu	ulse-field gel electrophoresis is useful fo	r sep	arating					
A)	Single stranded RNA	B)	DNA fragments in identical length					
C)	Large DNA fragments	D)	Chromosomal DNA					
72. In	itial milk ejection from breast is accom	plish	ed by					
A)	Somatomammotropin	B)	Oxytocin					
C)	Placental lactogen	D)	Prolactin					
73. W	hich one of the following is odd one wit	h ref	erence to oxygen?					
A)	Myoglobin	B)	Hemoglobin					
C)	Hemocyanin	D)	Globulin					

68. Which of the following forces is most favorable for protein folding

74. What	will be th	e molarity o	f a solution	having 7	72.06g of	BaCl ₂ in	required	amount of	f
water to 1	nake up 80	00 ml? (Mol	mass of BaC	l_2 is 208.	23 g/mol))	roquir cu	amount o	L

A) 0.433 M

B) 4.33 M

C) 5.33 M

D) 0.866 M

75. The grey crescent of frog's embryo represents the future

- A) Anterior side of developing embryo
- B) Posterior side of developing embryo
- C) Ventral side of the developing embryo
- D) Dorsal side of the developing embryo

For rough work