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1. A new sequence is obtained from the sequence of positive integers

{1, 2, 3, . . .} by deleting all the perfect squares. Then the 2015-th term

of the new sequence is C

(A) 2058 (B) 2059 (C) 2060 (D) 2062.

2. The maximum value of cosα1 · cosα2 · · · cosαn under the conditions

0 ≤ αi ≤ π/2 for all i and cotα1 · cotα2 · · · cotαn = 1 is A

(A)
1

2n/2
(B)

1
2n

(C)
1
2n

(D) none of these.

3. Three distinct squares are selected at random from a 8×8 chess board.

Then the probability that they form an L-shaped pattern (looked at

from one fixed side only) as drawn below is B

(A) 196/
(

64
3

)
(B) 49/

(
64
3

)
(C) 36/

(
64
3

)
(D) greater than 1/2.

4. The number of functions f : {1, 2, . . . , 10} → {1, 2, . . . , 10} such that

f(x) 6= x for all x is B

(A) 10! (B) 910 (C) 109 (D) 1010 − 1.

5. The set of all real numbers satisfying y2 − 2y − x2 + 4x = 3 is a D

(A) circle (B) point (C) hyperbola (D) pair of straight lines.

6. The fractional part of
524

24
equals C

(A) 5/24 (B) 9/24 (C) 1/24 (D) none of these.
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7. Suppose X is distributed as Poisson with mean λ. Then E(1/(X +1))

is C

(A)
eλ − 1
λ

(B)
eλ − 1
λ+ 1

(C)
1− e−λ

λ
(D)

1− e−λ

λ+ 1
.

8. In a triangle with sides of length a, b, c, suppose b+ c = x and bc = y.

If also (x+ a)(x− a) = y, then the triangle is necessarily D

(A) equilateral (B) right angled

(C) acute angled (D) obtuse.

9. Let

f(x) = lim
n→∞

log(2 + x)− x2n sinx
1 + x2n

for x > 0.

Then B

(A) f is continuous at x = 1

(B) lim
x→1+

f(x) 6= lim
x→1−

f(x)

(C) lim
x→1+

f(x) = sin 1

(D) lim
x→1−

f(x) does not exist.

10. Suppose a real matrix A satisfies A3 = A, A 6= I , A 6= 0. If Rank(A) =

r and Trace(A) = t, then B

(A) r ≥ t and r + t is odd

(B) r ≥ t and r + t is even

(C) r < t and r + t is odd

(D) r < t and r + t is even.

11. The equation ex
dy

dx
+ 3y = x2y is C

(A) separable and not linear

(B) linear and not separable

(C) separable and linear

(D) neither separable nor linear.
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12. LetG be the cyclic group generated by an element a of order 30. What

is the order of a18? D

(A) 30 (B) 10 (C) 6 (D) none of these.

13. The remainder when x2015 + x2014 + 2015 is divided by x2 − 1 equals A

(A) x+ 2016 (B) x− 2016 (C) 2016x+ 1 (D) x+ 2015.

14. If P,Q are two invertible matrices such that PQ = −QP , then A

(A) Trace(P ) = Trace(Q) = 0

(B) Trace(P ) = Trace(Q) = 1

(C) Trace(P ) 6= Trace(Q)

(D) None of these.

15. Let f be a convex function, i.e.,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all 0 ≤ t ≤ 1 and x, y ∈ R. Then which of the following is neces-

sarily true? A

(A) 2f(0) + f(4) ≥ 2f(1) + f(2)

(B) fg is a convex function whenever g is convex

(C) f is nondecreasing

(D) none of these.

16. SupposeA is a 100×100 real symmetric matrix whose diagonal entries

are all positive. Then which of the following is necessarily true? C

(A) All eigenvalues of A are greater than 0

(B) no eigenvalue of A is greater than 0

(C) at least one eigenvalue of A is greater than 0

(D) none of these.
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17. The function F (k) is defined for positive integers as F (1) = 1, F (2) =

1, F (3) = −1 and F (2k) = F (k), F (2k + 1) = F (k) for k ≥ 2. Then

F (1) + F (2) + · · ·+ F (63) equals A

(A) 1 (B) −1 (C) −32 (D) 32.

18. For a > 0, the series
∞∑
n=2

aloge n

is convergent if and only if D

(A) 0 < a < 1 (B) 0 < a ≤ e

(C) 0 < a < e (D) 0 < a < 1/e.

19. Let

f(x) = x2 +
1
x2

+ x+
1
x
, x > 0

and let m = min{f(x)}. Then B

(A) m = 1 (B) m = 4 (C) m = 27/4 (D) m does not exist.

20. The integral ∫ 1

0

sinx
xα

dx

(A) is finite only for α = 0 C

(B) is finite only for |α| < 1

(C) is finite for all α < 2

(D) is infinite for any value of α.

21. Given θ in the range 0 ≤ θ < π, the equation

2x2 + 2y2 + 4x cos θ + 8y sin θ + 5 = 0

represents a circle for all θ in the interval B

(A) 0 < θ < π/3 (B) π/4 < θ < 3π/4

(C) 0 < θ < π/2 (D) 0 ≤ θ < π.
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22. For a natural number n, let d(n) denote the number of divisors of n,

including 1 and n. If 1525 ≤ n ≤ 1675 and d(n) = 21, then n equals B

(A) 1550 (B) 1600 (C) 1625 (D) 1650.

23. How many 5× 5 matrices are there such that each entry is 0 or 1 and

each row sum and each column sum is 4? C

(A) 64 (B) 32 (C) 120 (D) 96.

24. There are 10 boxes each containing 6 white and 7 red balls. Two ran-

dom boxes are chosen, one ball is drawn simultaneously at random

from each and transferred to the other box. Now a box is again chosen

from the 10 boxes and a ball is chosen from it. Then the probability

that this ball is white is A

(A) 6/13 (B) 7/13 (C) 5/13 (D) none of these.

25. The integral ∫ ∞
0

∫ ∞
0

e−(x+y)

x+ y
dxdy

is C

(A) infinite

(B) finite, but cannot be evaluated in closed form

(C) 1

(D) 2.

26. Let

An =
1 · 2 · 3 + 2 · 3 · 4 + · · · upto n terms
n(1 · 2 + 2 · 3 + · · · upto n terms)

.

Then lim
n→∞

An is C

(A) 1/4 (B) 1/2 (C) 3/4 (D) 5/4.
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27. For n ≥ 1, let Gn be the geometric mean of {sin(
π

2
· k
n

) : 1 ≤ k ≤ n}.
Then lim

n→∞
Gn is D

(A) 1/4 (B) log 2 (C) 1
2 log 2 (D) 1/2.

28. Suppose a, b, x, y are real numbers such that a2+b2 = 81, x2+y2 = 121

and ax+ by = 99. Then the set of all possible values of ay − bx is A

(A) {0} (B)
(

0,
9
11

]
(C)

(
0,

9
11

)
(D)

[
9
11
,∞
)

.

29. A solution of
d2x

dt2
+
dx

dt
− 2x = 0

that satisfies x(0) = 3 and remains bounded as t→∞ is C

(A) x = 3e−t (B) x = 4e−2t − et (C) x = 3e−2t (D) x = 2e−2t + e−t.

30. Let G1 = {1,−1, i,−i} and G2 = {1, ω, ω2}, where i =
√
−1 and ω is a

complex cube root of 1. Define an operation on the Cartesian product

G = G1 ×G2 by

(x1, y1) ? (x2, y2) = (x1x2, y1y2).

Then D

(A) (G, ?) is not a group

(B) (G, ?) is a group but not cyclic

(C) (G, ?) is a group but not commutative

(D) (G, ?) is a commutative cyclic group.
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