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1. Suppose a, b, c > 0 are in geometric progression and ap = bq = cr 6= 1.

Which one of the following is always true?

(A) p, q, r are in geometric progression

(B) p, q, r are in arithmetic progression

(C) p, q, r are in harmonic progression

(D) p = q = r

2. How many complex numbers z are there such that |z+1| = |z+ i| and

|z| = 5?

(A) 0 (B) 1 (C) 2 (D) 3

3. The number of real roots of the equation

2 cos

(
x2 + x

6

)
= 2x + 2−x is

(A) 0 (B) 1 (C) 2 (D) ∞

4. If a, b, c and d satisfy the equations

a + 7b + 3c + 5d = 16

8a + 4b + 6c + 2d = −16
2a + 6b + 4c + 8d = 16

5a + 3b + 7c + d = −16

Then (a+ d)(b+ c) equals

(A) −4 (B) 0 (C) 16 (D) −16

5. Let

f(x, y) =


x2y

x4 + y2
, if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Then lim
(x,y)→(0,0)

f(x, y)

(A) equals 0 (B) equals 1 (C) equals 2 (D) does not exist
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6. Find the centroid of the triangle whose sides are given by the follow-

ing equations:

4x − y = 19

x − y = 4

x + 2y = −11

(A)
(
11

3
,−7

3

)
(B)

(
5

3
,−7

3

)
(C)

(
−11

3
,−7

3

)
(D)

(
7

3
,−11

3

)
7. The set of value(s) of α for which y(t) = tα is a solution to the differ-

ential equation

t2
d2y

dx2
− 2t

dy

dx
+ 2y = 0 for t > 0 is

(A) {1} (B) {1,−1} (C) {1, 2} (D) {−1, 2}

8. Let g : R → R be differentiable with g′(x2) = x3 for all x > 0 and

g(1) = 1. Then g(4) equals

(A) 64/5 (B) 32/5 (C) 37/5 (D) 67/5

9. Suppose X and Y are two independent random variables both fol-

lowing Poisson distribution with parameter λ. What is the value of

E(X − Y )2?

(A) λ (B) 2λ (C) λ2 (D) 4λ2

10. If A1, A2, . . . , An are independent events with probabilities p1, p2, . . . ,

pn respectively, then

P

(
n⋃
i=1

Ai

)
equals

(A)
n∑
i=1

pi (B)
n∏
i=1

pi (C)
n∏
i=1

(1− pi) (D) 1−
n∏
i=1

(1− pi)
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11. Ravi asked his neighbor to water a delicate plant while he is away.

Without water, the plant would die with probability 4/5 and with

water it would die with probability 3/20. The probability that Ravi’s

neighbor would remember to water the plant is 9/10. If the plant

actually died, what is the probability that Ravi’s neighbor forgot to

water the plant?

(A) 4/5 (B) 27/43 (C) 16/43 (D) 2/25

12. Suppose there are n positive real numbers such that their sum is 20

and the product is strictly greater than 1. What is the maximum pos-

sible value of n?

(A) 18 (B) 19 (C) 20 (D) 21

13. Which one of the following statements is correct regarding the ele-

ments and subsets of the set {1, 2, {1, 2, 3}}?

(A) {1, 2} ∈ {1, 2, {1, 2, 3}} (B) {1, 2} ⊆ {1, 2, {1, 2, 3}}

(C) {1, 2, 3} ⊆ {1, 2, {1, 2, 3}} (D) 3 ∈ {1, 2, {1, 2, 3}}

14. The number of terms independent of x in the binomial expansion of(
3x2 +

1

x

)10

is

(A) 0 (B) 1 (C) 2 (D) 5

15. The number of positive integers n for which n2+96 is a perfect square

is

(A) 0 (B) 1 (C) 2 (D) 4

16. Suppose a 6 digit number N is formed by rearranging the digits of

the number 123456. If N is divisible by 5, then the set of all possible

remainders when N is divided by 45 is

(A) {30} (B) {15, 30} (C) {0, 15, 30} (D) {0, 5, 15, 30}
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17. The number of positive integers n for which

n3 + (n+ 1)3 + (n+ 2)3 = (n+ 3)3

is

(A) 0 (B) 1 (C) 2 (D) 3

18. Let A =

(
−1 2

0 −1

)
, and B = A+A2 +A3 + · · ·+A50. Then

(A) B2 = I (B) B2 = 0 (C) B2 = A (D) B2 = B

19. Let A be a real 2×2 matrix. If 5+3i is an eigenvalue of A, then det(A)

(A) equals 4 (B) equals 8 (C) equals 16

(D) cannot be determined from the given information

20. Let f : (0,∞)→ (0,∞) be a strictly decreasing function. Consider

h(x) =

f

(
x

1 + x

)
1 + f

(
x

1 + x

) .
Which one of the following is always true?

(A) h is strictly decreasing

(B) h is strictly increasing

(C) h is strictly decreasing at first and then strictly increasing

(D) h is strictly increasing at first and then strictly decreasing

21. Let A = {1, 2, 3, 4, 5, 6, 7, 8}. How many functions f : A → A can be

defined such that f(1) < f(2) < f(3)?

(A)
(
8

3

)
(B)

(
8

3

)
58 (C)

(
8

3

)
85 (D)

8!

3!
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22. The infinite series
∞∑
n=1

an log n

n2
converges if and only if

(A) a ∈ [−1, 1) (B) a ∈ (−1, 1] (C) a ∈ [−1, 1] (D) a ∈ (−∞,∞)

23. Given that
∫ ∞
−∞

e−x
2/2dx =

√
2π, what is the value of

∫ ∞
−∞
|x|−1/2e−|x|dx?

(A) 0 (B)
√
π (C) 2

√
π (D) ∞

24. Let f : R→ R be a strictly increasing function. Then which one of the

following is always true?

(A) The limits lim
x→a+

f(x) and lim
x→a−

f(x) exist for all real numbers a

(B) If f is differentiable at a then f ′(a) > 0

(C) There cannot be any real number B such that f(x) < B for all

real x

(D) There cannot be any real number L such that f(x) > L for all

real x

25. An integer is said to be a palindrome if it reads the same forward or

backward. For example, the integer 14541 is a 5-digit palindrome and

12345 is not a palindrome.

How many 8 digit palindromes are prime?

(A) 0 (B) 1 (C) 11 (D) 19

26. Let x and y be real numbers satisfying 9x2 +16y2 = 1. Then (x+ y) is

maximum when

(A) y = 9x/16 (B) y = −9x/16 (C) y = 4x/3 (D) y = −4x/3
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27. Consider the function

f(x) =
e−|x|

max{ex, e−x}
, x ∈ R.

Then

(A) f is not continuous at some points

(B) f is continuous everywhere, but not differentiable anywhere

(C) f is continuous everywhere, but not differentiable at exactly one

point

(D) f is differentiable everywhere

28. Let A be a square matrix such that A3 = 0, but A2 6= 0. Then which of

the following statements is not necessarily true?

(A) A 6= A2

(B) Eigenvalues of A2 are all zero

(C) rank(A) > rank(A2)

(D) rank(A) > trace(A)

29. Suppose a is a real number for which all the roots of the equation

x4 − 2ax2 + x+ a2 − a = 0 are real. Then

(A) a < −2

3
(B) a = 0 (C) 0 < a <

3

4
(D) a ≥ 3

4

30. A club with nmembers is organized into four committees so that each

member belongs to exactly two committees and each pair of commit-

tees has exactly one member in common. Then

(A) n = 4

(B) n = 6

(C) n = 8

(D) n cannot be determined from the given information
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