2015

BOOKLET No.

${\rm TEST}\ {\rm CODE}:{\rm MTB}$

Afternoon

Answer as many questions as you can

Answering *five* questions correctly would be considered adequate

Time : 2 hours

Write your Registration number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer-booklet.

ALL ROUGH WORK IS TO BE DONE ON THIS BOOKLET AND/OR THE ANSWER-BOOKLET. CALCULATORS ARE NOT ALLOWED.

STOP! WAIT FOR THE SIGNAL TO START.

- $\mathbf{2}$
- \mathbb{R} denotes the set of real numbers.
- \mathbb{Q} denotes the set of rational numbers.
- \mathbb{Z} denotes the set of integers.
 - **Q 1.** Let f be a measurable function on \mathbb{R} such that $\int_I f d\lambda = 0$ for all bounded intervals $I \subset \mathbb{R}$, where λ is the Lebesgue measure on \mathbb{R} . Show that

$$\lambda(\{x \in \mathbb{R} : f(x) \neq 0\}) = 0$$

Q 2. Let $C_{\mathbb{R}}[0,1]$ denote the Banach space of all continuous real-valued functions on [0,1] with norm

$$||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}.$$

Show that there is no inner product on $C_{\mathbb{R}}[0,1]$ that induces the norm $\|\cdot\|_{\infty}$.

Q 3. Find the smallest positive integer n such that

 $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$

is isomorphic to a subgroup of S_n , where S_n is the group of all permutations of $\{1, 2, ..., n\}$.

- **Q** 4. Let p = 1 + 4n be a prime in \mathbb{Z} .
 - (a) Show that (2n)! is a solution to the congruence

 $x^2 \equiv -1 \pmod{p}.$

- (b) Use (a) to show that p is not a prime element in $\mathbb{Z}[i]$.
- (c) Use (b) to show that $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.
- **Q 5.** Fix a $p \in [1, \infty]$. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers such that $\{a_n x_n\}_{n=1}^{\infty} \in \ell^p$ for all sequences $\{x_n\}_{n=1}^{\infty} \in \ell^p$. Show that $\{a_n\}_{n=1}^{\infty} \in \ell^{\infty}$.
- **Q 6.** Let $\{B_{\alpha} : \alpha \in A\}$ be a family of piecewise disjoint Lebesgue measurable subsets of [0, 1] each of positive measure. Show that the family is countable.

Q 7. Let *C*[0, 1] denote the Banach space of all continuous complex-valued functions on [0, 1] with norm

 $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}.$

Let $g: [0,1] \to [0,1]$ be a non-constant continuous function. Consider the operator $T: C[0,1] \to C[0,1]$ defined by $Tf = f \circ g$, that is, $Tf(x) = f(g(x)), f \in C[0,1], x \in [0,1]$.

Show that the image of the unit ball in C[0,1] under T is not compact in C[0,1].

- **Q 8.** Let p be a prime and $K = \mathbb{Q}(\alpha)$, where $\alpha^3 = p$. Find the minimal polynomial of $\alpha + \alpha^2$ over \mathbb{Q} . Justify your answer completely.
- **Q** 9. Let n > 1 be an odd integer. Show that n does not divide $3^n + 1$.
- **Q 10.** (a) Let R be a commutative ring with unity. Let $a, b, c \in R$ be such that there exist $x, y, z \in R$ with

$$xa + yb + zc = 1.$$

Show that there exist $\alpha, \beta, \gamma \in R$ such that $\alpha a^{15} + \beta b^{16} + \gamma c^{17} = 1.$

(b) Let R be a commutative ring with unity such that for each $a \in R$ there exists an integer n(a) > 1 such that $a^{n(a)} = a$. Prove that every prime ideal of R is maximal.