2015

BOOKLET No.

TEST CODE : MTA

Forenoon

Answer as many questions as you can

Answering *five* questions correctly would be considered adequate

Time : 2 hours

Write your Registration number, Test Centre, Test Code and the Number of this booklet in the appropriate places on the answer-booklet.

ALL ROUGH WORK IS TO BE DONE ON THIS BOOKLET AND/OR THE ANSWER-BOOKLET. CALCULATORS ARE NOT ALLOWED.

STOP! WAIT FOR THE SIGNAL TO START.

- $\mathbf{2}$
- \mathbb{R} denotes the set of real numbers.
- \mathbb{C} denotes the set of complex numbers.
- \mathbb{N} denotes the set of positive integers.
 - **Q** 1. Find the sum of the series

$$\sum_{n=0}^{\infty} \frac{n^2}{2^n}.$$

- **Q** 2. Let A be an $m \times n$ real matrix.
 - (a) Show that $N(A) \cap Im(A^T) = \{0\}$, where A^T is the transpose of A, Im(A) is the image of A and $N(A) = \{v \in \mathbb{R}^n : Av = 0\}$.
 - (b) If for two suitable matrices B and C, $AA^TB = AA^TC$ then show that $A^TB = A^TC$.
- **Q 3.** Let V be a finite dimensional vector space over \mathbb{R} . Suppose that a subset $A \subset V$ has the following property: For any finite set of scalars $a_1, a_2, \ldots, a_n \in \mathbb{R}$ which satisfies $\sum_{i=1}^n a_i = 1$ and any vectors $v_1, v_2, \ldots, v_n \in A$, $a_1v_1 + a_2v_2 + \cdots + a_nv_n \in A$.

Show that $A = x_0 + W$ for some $x_0 \in V$ and some subspace W of V, where $x_0 + W = \{x_0 + v : v \in W\}$.

- **Q** 4. Let X_n = number of heads obtained from n independent coin tosses with probability of head p. Let p_n be the probability that X_n is an even number.
 - (a) Show that $p_{n+1} = (1-2p)p_n + p$.
 - (b) Show that $\lim_{n \to \infty} p_n$ exists and find the limit.
- **Q 5.** Let C be a closed subset of \mathbb{R}^n and r be a positive real number. Show that the set

 $D = \{ y \in \mathbb{R}^n : \text{there exists } x \in C \text{ with } \|x - y\| = r \}$

is closed in \mathbb{R}^n , where $||x|| = (x_1^2 + \dots + x_n^2)^{1/2}$ for $x = (x_1, \dots, x_n) \in \mathbb{R}^n$.

Q 6. Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function.

- (a) Compute $\int_0^{2\pi} f(re^{i\theta}) d\theta$, r > 0.
- (b) If $\int_{\mathbb{R}^2} |f(x+iy)| \ dxdy < \infty,$ then prove that f(z) = 0 for all $z \in \mathbb{C}$.
- **Q** 7. Let $\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$, $t \in \mathbb{R}$, be the standard normal density function and $\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$ be the standard normal distribution function. Let

$$f_{\alpha}(t) = 2\phi(t)\Phi(\alpha t), \quad t \in \mathbb{R},$$

where $\alpha \in \mathbb{R}$. Show that f_{α} is a probability density function for any $\alpha \in \mathbb{R}$.

Q 8. Consider the equivalence relation ' \sim ' on $\mathbb{R} \times [0,1]$ defined by

$$(x,t) \sim (x+1,t), x \in \mathbb{R} \text{ and } t \in [0,1].$$

Let $X = (\mathbb{R} \times [0,1]) / \sim$ be the quotient space. Prove that X is Hausdorff and compact.

Q 9. For $k \in \mathbb{N}$, let

$$P_k(t) = c_k \left(\frac{1 + \cos t}{2}\right)^k, t \in [-\pi, \pi],$$

where $c_k \in \mathbb{R}$ is chosen in such a way that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_k(t) \, dt = 1.$$

- (a) Prove that $c_k \leq \frac{\pi}{2}(k+1)$ for all $k \in \mathbb{N}$.
- (b) Using (a) or otherwise prove that for every δ with $0 < \delta < \pi$,

$$\lim_{k \to \infty} \left(\sup_{\delta \le |t| \le \pi} P_k(t) \right) = 0.$$

Q 10. Let $\Omega = \{z \in \mathbb{C} : |z| < 2\}$ and f be a function on Ω which is holomorphic at every point of Ω except z = 1 and at z = 1 it has a simple pole. Suppose that

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \quad |z| < 1$$

Prove that $\lim_{n \to \infty} a_n = -c$, where c is the residue of f at z = 1.