## 2016

BOOKLET NO.

TEST CODE: **STA** 

<u>Forenoon</u>

No. of Questions: 10 Time: 2 hours

- Answer as many questions as you can. All questions carry equal weight.
- Do not feel discouraged if you are not able to answer all the questions.
- Partial credit may be given for partial answer.
- Full credit will be given for complete and rigorous arguments.

Write your Name, Registration Number, Test Code, Booklet No. etc., in the appropriate places on the answer-booklet.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET AND/OR ON THE ANSWER-BOOKLET. YOU ARE NOT ALLOWED TO USE CALCULATORS. STOP! WAIT FOR THE SIGNAL TO START.

- 1. Find all  $2 \times 2$  matrices A with real entries such that  $A^2 = -I$ , where  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ .
- 2. Find all continuously differentiable functions f from the real line to the real line satisfying

$$(f(x))^{2} = \int_{0}^{x} [f(t)^{2} + f'(t)^{2}]dt + 2016,$$

for all real x.

- 3. Suppose X and Y are two random variables with finite variances such that
  - (a) E(X) = E(Y), and
  - (b) for some  $\beta \neq 0$  and for all x, y

$$E(Y|X=x) = \beta x$$
 and  $E(X|Y=y) = \frac{y}{\beta}$ .

Show that P(X = Y) = 1.

4. Prove that

$$\sum_{i=0}^{n} \frac{e^{-n}n^{i}}{i!} \to \frac{1}{2} \text{ as } n \to \infty.$$

- 5. Consider an irreducible and aperiodic Markov chain with a finite or countably infinite state space. Let the transition matrix P be symmetric. Find  $\lim_{n\to\infty} p_{ij}^{(n)}$  for all i, j, where  $p_{ij}^{(n)}$  is the (i, j)-th element of  $P^n$ .
- 6. Let  $p \in (0, \frac{1}{2})$  be unknown. There are two coins with probabilities of head p and 1-p. One of the two coins is picked at random. This coin is tossed 10 times independently. Let  $X_i = 1$  if the i-th toss results in a head, and  $X_i = 0$  otherwise, for i = 1, ..., 10.
  - (a) Are  $X_1, ..., X_{10}$  identically distributed? Are they independent? Justify both your answers.
  - (b) Find the maximum likelihood estimator of p based on  $X_1, ..., X_n$ .

- 7. There are 30 multiple choice questions (with 5 possible answers for each, exactly one being correct) in a certain examination. A student knows the answers to k questions and answers them correctly. For the remaining 30-k questions, the student guesses randomly among the 5 choices. Let X be the total number of correct answers given by the student. The integer k is unknown to the examiner. Find the maximum likelihood estimator of k based on X.
- 8. Let  $\beta_1, \beta_2, \beta_3$  be the true interior angles of a triangle. Suppose that  $Y_1, Y_2, Y_3$  are independent measurements of  $\beta_1, \beta_2, \beta_3$ , respectively. We assume  $Y_i$  is normally distributed with mean  $\beta_i$  and variance  $\sigma^2$  for i = 1, 2, 3, where  $\sigma > 0$  is unknown. Obtain the best linear unbiased estimators (BLUEs) of  $\beta_1, \beta_2, \beta_3$  based on these measurements.
- 9. In a large survey, an approximate 95% confidence interval (using normal approximation) for the proportion of literate people in some state turned out to be (42.2%, 61.8%). A subsequent concern was whether more than 50% of the people in that state are literate. Formulate this as a hypothesis testing problem. Based on the given confidence interval, perform an appropriate test of this hypothesis at a significance level of 5%. You may use the relations

$$\int_{-\infty}^{1.645} \phi(x)dx = 0.95 \text{ and } \int_{-\infty}^{1.96} \phi(x)dx = 0.975,$$

where  $\phi(x)$  is the standard normal density.

10. For a bivariate data set  $(x_i, y_i)$ , i = 1, ..., 50, a statistician tries to fit the model

$$y_i = \alpha + \beta x_i + \epsilon_i$$

where  $x_i$ 's are assumed to be fixed, and  $\epsilon_i$ 's are independently and identically distributed as normal with mean 0 and variance  $\sigma^2$ . Here the real numbers  $\alpha, \beta$  and  $\sigma^2 > 0$  are unknown. The model is fitted using maximum likelihood estimation, and the residuals  $r_i = y_i - \hat{y}_i$  are plotted against  $x_i$ 's, where  $\hat{y}_i$ 's are the

fitted values. These plots are shown below for four different data sets. If you think some of these plots is/are actually impossible, then identify them with justification. Suggest, with justification, how you would modify your model (if necessary) for the other plot(s).

