2016

BOOKLET NO.

TEST CODE: **STB**

Afternoon

No. of Questions: 8 Time: 2 hours

- Answer as many questions as you can. All questions carry equal weight.
- Do not feel discouraged if you are not able to answer all the questions.
- Partial credit may be given for partial answer.
- Full credit will be given for complete and rigorous arguments.

Write your Name, Registration Number, Test Code, Booklet No. etc., in the appropriate places on the answer-booklet.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET AND/OR ON THE ANSWER-BOOKLET. YOU ARE NOT ALLOWED TO USE CALCULATORS. STOP! WAIT FOR THE SIGNAL TO START.

- 1. Consider a random arrangement of 20 boys and 16 girls in a line. Let X be the number of boys with girls on both sides, and Y be the number of girls with boys on both sides. Find E(X + Y).
- 2. Let $X_1, ..., X_n$ be idependently and identically distributed random variables with distribution function F, where n is an odd integer. Let $Y_1, ..., Y_n$ be independently and identically distributed observations from the empirical distribution function \widehat{F}_n associated with $X_1, ..., X_n$. Obtain the distribution of the median of $Y_1, ..., Y_n$.
- 3. Let X be a nonnegative random variable such that

$$E\left(\sum_{n=1}^{\infty} X^n\right) < \infty. \tag{*}$$

- (a) Show that X cannot be uniformly distributed over (0,1).
- (b) Show that $P(X \ge 1) = 0$.
- (c) Give an example of a continuous random variable X satisfying the relation in (*).
- 4. A shopkeeper places an order of one extra item only when his stock of that item at the end of a week is one or less. Let X_n , $n \ge 1$, denote the number of items in his stock at the end of the n-th week before he decides to place an order or not, with $X_0 = 0$. Assume that the weekly demand for the sale of this item from this shop follows a Poisson distribution with mean λ , and the item is sold on demand till the stock lasts.

Prove that X_n , $n \ge 1$, defines a Markov chain, and then specify its state space and the transition probability matrix. Also derive the stationary probabilities.

5. Let $(X_1, Y_1), ..., (X_n, Y_n)$ be independently and identically distributed observations from the uniform distribution over the triangle ABC, where A = (0,0), B = (a,0), C = (a,b), and a,b are unknown positive constants. Define $(U_i, V_i) = (X_i, Y_i/X_i)$. Show that, for each i = 1, ..., n, the random variable U_i is independent

- of V_i . Hence or otherwise, find the maximum likelihood estimator of the area of the triangle ABC.
- 6. Let $Y = e^{UX} + Z$, where U, X, Z are independent. Here X is uniformly distributed over (0,1), Z has the standard normal distribution and U has density f(u) = 2u, for 0 < u < 1.
 - (a) Find the best predictor of Y given $X = \frac{1}{2}$ when U and Z are unknown.
 - (b) Find the best *linear* predictor of Y given $X = \frac{1}{2}$ when U and Z are unknown.
- 7. Suppose that you have a random observation X with density f over the real line. Based on X, we want to test

$$H_0: f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} \text{ versus } H_1: f(x) = \frac{1}{\pi(1+x^2)}.$$

- (a) Prove that a test which rejects H_0 if and only if $|X| > \Phi^{-1}(0.975)$ is a most powerful test of level $\alpha = 0.05$ for this problem. Here $\Phi(x)$ is the standard normal distribution function.
- (b) Find the power of the test described in part (a) above.
- 8. Consider a completely randomised design (CRD) with t treatments, $t \geq 2$, and n = 4t + 3 observations. If we want to minimise the average variance of the best linear unbiased estimators (BLUEs) of all the pairwise comparisons of treatment effects, how many observations should be allocated to each treatment?