BOOKLET NO. TEST CODE: UGA

Forenoon

Questions: 30 Time: 2 hours

Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in the appropriate places on the Answersheet.

This test contains 30 questions in all. For each of the 30 questions, there are four suggested answers. Only one of the suggested answers is correct. You will have to identify the correct answer in order to get full credit for that question. Indicate your choice of the correct answer by darkening the appropriate oval •, completely on the answersheet.

You will get

4 marks for each correctly answered question,

0 marks for each incorrectly answered question and

1 mark for each unattempted question.

ALL ROUGH WORK MUST BE DONE ON THIS BOOKLET ONLY.
YOU ARE NOT ALLOWED TO USE CALCULATOR.

WAIT FOR THE SIGNAL TO START.

UGA_o-1

(A) 1.	(B) 0.	(C) -1.	(D) 2.		
3. The p	3. The polynomial $x^7 + x^2 + 1$ is divisible by				
(A) x^{ξ}	$5 - x^4 + x^2 - x + 1.$	(B) $x^5 + x^4$	+ 1.		
(C) x^5	$x^{2} + x^{4} + x^{2} + x + 1$.	(D) $x^5 - x^4$	$+x^2+x+1.$		
	>0 . If the equation $p(x)=$ bots, then α must satisfy	$= x^3 - 9x^2 + 26x - \alpha$ has	three positive		
(A) α	$\leq 27.$	(B)) $\alpha > 81$.		
(C) 27	$r < \alpha \le 54$.	(D)) $54 < \alpha \le 81$.		
5. The la	argest integer which is less	s than or equal to $(2+$	$(\overline{3})^4$ is		
(A) 19	92. (B) 193.	(C) 194.	(D) 195.		
length circle (A) $\frac{1}{2}$	der a circle of unit radius and the largest with that chord as its base $+\frac{\sqrt{2}}{4}$. $+\frac{\sqrt{3}}{4}$.	triangle that can be ins			
	$=3+4i$. If z_2 is a completest and the least values of				
(A) 7	and 3.	(B) 5 a	and 1.		
(C) 9	and 5.	(D) 4	$+\sqrt{7}$ and $\sqrt{7}$.		

1. The largest integer n for which n+5 divides n^5+5 is

(B) 3120.

remainder when pa + qb is divided by pq is

2. Let p, q be primes and a, b be integers. If pa is divided by q, then the remainder is 1. If qb is divided by p, then also the remainder is 1. The

(C) 3125.

(D) 3130.

(A) 3115.

	(B) f is not continuous at x_0 .						
	(C) f is continuous everywhere and differentiable only at x_0 .						
	(D) f is differentiable everywhere except at x_0 .						
10.). The set of all real numbers in $(-2,2)$ satisfying						
	$2^{ x } - 2^{x-1} - 1 = 2^{x-1} + 1$						
	is						
	(A) $\{-1,1\}$.		(B) {-	$-1\} \cup [1,2).$			
	(C) $(-2, -1] \cup [1, 2]$).	(D) ($-2, -1] \cup \{1\}.$			
11.	1. Let $S(k)$ denote the set of all one-to-one and onto functions from $\{1,2,3,\ldots,k\}$ to itself. Let p,q be positive integers. Let $S(p,q)$ be the set of all τ in $S(p+q)$ such that $\tau(1)<\tau(2)<\cdots<\tau(p)$ and $\tau(p+1)<\tau(p+2)<\cdots<\tau(p+q)$. The number of elements in the set $S(13,29)$ is						
	(A) 377.	(B) (42)!.	(C) $\binom{42}{13}$.	(D) $\frac{42!}{29!}$.			
12.	2. Suppose that both the roots of the equation $x^2 + ax + 2016 = 0$ are positive even integers. The number of possible values of a is						
	(A) 6.	(B) 12.	(C) 18.	(D) 24.			
2							

8. Consider two distinct arithmetic progressions (AP) each of which has a positive first term and a positive common difference. Let S_n and T_n

be the sums of the first n terms of these AP. Then $\lim_{n\to\infty}\frac{S_n}{T_n}$ equals

(B) ∞ or 0 depending on which AP has larger common difference.

9. Let $f(x) = \max\{\cos x, x^2\}$, $0 < x < \frac{\pi}{2}$. If x_0 is the solution of the

(A) ∞ or 0 depending on which AP has larger first term.

(C) the ratio of the first terms of the AP.

equation $\cos x = x^2$ in $(0, \frac{\pi}{2})$, then

(A) f is continuous only at x_0 .

(D) the ratio of the common differences of the AP.

13. Let $b \neq 0$ be a fixed real number. Consider the family of parabolas given by the equations

$$y^2 = 4ax + b$$
, where $a \in \mathbb{R}$.

The locus of the points on the parabolas at which the tangents to the parabolas make 45° angle with the x-axis is

(A) a straight line.

(B) a pair of straight lines.

(C) a parabola.

- (D) a hyperbola.
- 14. Consider the curve represented by the equation

$$ax^2 + 2bxy + cy^2 + d = 0$$

in the plane, where a>0, c>0 and $ac>b^2$. Suppose that the normals to the curve drawn at 5 distinct points on the curve all pass through the origin. Then

(A) a = c and b > 0.

(B) $a \neq c$ and b = 0.

(C) $a \neq c$ and b < 0.

- (D) None of the above.
- 15. Let *P* be a 12-sided regular polygon and *T* be an equilateral triangle with its incircle having radius 1. If the area of *P* is the same as the area of *T*, then the length of the side of *P* is
 - (A) $\sqrt{\sqrt{3} \cot 15^{\circ}}$.

(B) $\sqrt{\sqrt{3}\tan 15^{\circ}}$.

(C) $\sqrt{3\sqrt{2}\tan 15^\circ}$.

- (D) $\sqrt{3\sqrt{2} \cot 15^{\circ}}$.
- 16. Let ABC be a right-angled triangle with $\angle ABC = 90^{\circ}$. Let P be the midpoint of BC and Q be a point on AB. Suppose that the length of BC is 2x, $\angle ACQ = \alpha$, and $\angle APQ = \beta$. Then the length of AQ is
 - (A) $\frac{3x}{2\cot\alpha \cot\beta}.$

(B) $\frac{2x}{3\cot\alpha - 2\cot\beta}.$

(C) $\frac{3x}{\cot \alpha - 2 \cot \beta}$.

(D) $\frac{2x}{2\cot\alpha - 3\cot\beta}.$

17. Let [x] denote the greatest integer less than or equal to x. The value of the integral

$$\int_1^n [x]^{x-[x]} dx$$

is equal to

- (A) $1 + \frac{2^3}{\log_e 2} \frac{2^2}{\log_e 2} + \frac{3^4}{\log_e 3} \frac{3^3}{\log_e 3} + \dots + \frac{(n-1)^n}{\log_e (n-1)} \frac{(n-1)^{n-1}}{\log_e (n-1)}.$
- (B) $1 + \frac{1}{\log_e 2} + \frac{2}{\log_e 3} + \dots + \frac{n-2}{\log_e (n-1)}$.
- (C) $\frac{1}{2} + \frac{2^2}{3} + \dots + \frac{n^{n+1}}{n+1}$.
- (D) $\frac{2^3-1}{3} + \frac{3^4-2^3}{4} + \dots + \frac{n^{n+1}-(n-1)^n}{n+1}$.
- 18. Let $\alpha > 0, \beta \ge 0$ and $f : \mathbb{R} \to \mathbb{R}$ be continuous at 0 with $f(0) = \beta$. If $g(x) = |x|^{\alpha} f(x)$ is differentiable at 0, then
 - (A) $\alpha = 1$ and $\beta = 1$.

(B) $0 < \alpha < 1 \text{ and } \beta = 0$.

(C) $\alpha > 1$ and $\beta = 0$.

- (D) $\alpha > 0$ and $\beta > 0$.
- 19. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable and strictly decreasing function such that f(0) = 1 and f(1) = 0. For $x \in \mathbb{R}$, let

$$F(x) = \int_0^x (t-2)f(t) dt.$$

Then

- (A) F is strictly increasing in [0,3].
- (B) F has a unique minimum in (0,3) but has no maximum in (0,3).
- (C) F has a unique maximum in (0,3) but has no minimum in (0,3).
- (D) F has a unique maximum and a unique minimum in (0,3).
- 20. Let $f: \mathbb{R} \to \mathbb{R}$ be a nonzero function such that $\lim_{x \to \infty} \frac{f(xy)}{x^3}$ exists for all y > 0. Let $g(y) = \lim_{x \to \infty} \frac{f(xy)}{x^3}$. If g(1) = 1, then for all y > 0

(A)
$$q(y) = 1$$
.

(B)
$$g(y) = y$$
.

(C)
$$g(y) = y^2$$
.

(D)
$$g(y) = y^3$$
.

Let $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$. Then the maximum number of points in D such that the distance between any pair of points is at least 1 will be						
(B) 6.	(C) 7.	(D) 8.				
2. The number of 3-digit numbers abc such that we can construct ar isosceles triangle with sides a,b and c is						
(B) 163.	(C) 165.	(D) 183.				
on						
$f(x) = x^{1/2} - 3x^{1/3} + 2x^{1/4}, x \ge 0$						
(A) has more than two zeros.						
ys nonnegative.						
(C) is negative for $0 < x < 1$.						
(D) is one-to-one and onto.						
24. Let $X = \{a + \sqrt{-5} \ b : a, b \in \mathbb{Z}\}$. An element $x \in X$ is called special if there exists $y \in X$ such that $xy = 1$. The number of special elements in X is						
(B) 4.	(C) 6.	(D) 8.				
(B) 4. X , let $P(X)$ denote the sestatements.	. ,					
X, let $P(X)$ denote the se	et of all subsets of X					
Y , let $P(X)$ denote the set statements. $P(A) \cap P(B) = P(A \cap P(A) \cup P(B)) = P(A \cup P(A) \cup P(B)) = P(A \cup P(A) \cup P(B)) = P(A \cup $	et of all subsets of X (B) .					
X , let $P(X)$ denote the set statements. $P(A) \cap P(B) = P(A \cap P(A) \cup P(B)) = P(A \cup P(A)) = P(A) \implies A = P(A) $	et of all subsets of X (B) .					
Y , let $P(X)$ denote the set statements. $P(A) \cap P(B) = P(A \cap P(A) \cup P(B)) = P(A \cup P(A) \cup P(B)) = P(A \cup P(A) \cup P(B)) = P(A \cup $	et of all subsets of X (B) .					
X , let $P(X)$ denote the set statements. $P(A) \cap P(B) = P(A \cap P(A) \cup P(B)) = P(A \cup P(A)) = P(A) \implies A = P(A) $	et of all subsets of X (B) .					
	on D such that the distant B be $ (B) \ 6. $ ber of 3-digit numbers a riangle with sides a,b and $ (B) \ 163. $ on $ f(x) = x^{1/2} - 3x^{1/2} $ ore than two zeros. The expression is nonnegative. The expression a is a simple parameter of a and a is a simple parameter a is a such that a is a simple parameter a is a such that a is a	In D such that the distance between any pair a be $ (B) \ 6. \qquad (C) \ 7. $ where of 3-digit numbers abc such that we can riangle with sides a,b and c is $ (B) \ 163. \qquad (C) \ 165. $ on $ f(x) = x^{1/2} - 3x^{1/3} + 2x^{1/4}, x \geq 0 $ where than two zeros. By symmetry, we have for $0 < x < 1$. We to-one and onto, $ a + \sqrt{-5} \ b : a,b \in \mathbb{Z} \}. $ An element $x \in X$ is constant $a + \sqrt{-5} \ b : a,b \in \mathbb{Z} \}. $				

(C) (I), (III) are true and (II), (IV) are false.

(D) (II), (III), (IV) are true and (I) is false.

26.	26. Let a,b,c be real numbers such that $a+b+c<0$. Suppose that the equation $ax^2+bx+c=0$ has imaginary roots. Then			that the
	(A) $a < 0$ and $c < 0$. (C) $a > 0$ and $c < 0$.		(B) $a < 0$ ar (D) $a > 0$ ar	
27.	For $\alpha \in (0, \frac{3}{2})$, define (A) 1 for all α .	$e x_n = (n+1)^{\alpha} - n^{\alpha}.$		
	(B) 1 or 0 depending	on the value of α .		
	(C) 1 or ∞ depending on the value of α .			
	(D) 1, 0, or ∞ depen	ding on the value of	α .	
28.	Let f be a continuous $[0,\infty)$ and $g=f^{-1}$ $a,b>0$ and $a\neq b$. The second second f	(that is, $f(x) = y$ if	-	
		$\int_0^a f(x) \ dx + \int_0^b g$	(y) dy	
	is			
	(A) greater than or e	qual to ab .		
	(B) less than ab .			
	(C) always equal to			
	(D) always equal to	$\frac{af(a)+bg(b)}{2}$.		
29.	The sum of the serie	s $\sum_{n=1}^{\infty} n^2 e^{-n}$ is		
	(A) $\frac{e^2}{(e-1)^3}$.	(B) $\frac{e^2 + e}{(e-1)^3}$.	(C) $\frac{3}{2}$.	(D) ∞ .
30.	Let $f: [0,1] \to [-1,1]$] be a non-zero funct	ion such that	
		$f(2x) = 3f(x), x \in$	$\in [0, \frac{1}{2}].$	
	Then $\lim_{x\to 0+} f(x)$ is eq	ual to		
	(A) $\frac{1}{2}$.	(B) $\frac{1}{3}$.	(C) $\frac{2}{3}$.	(D) 0.