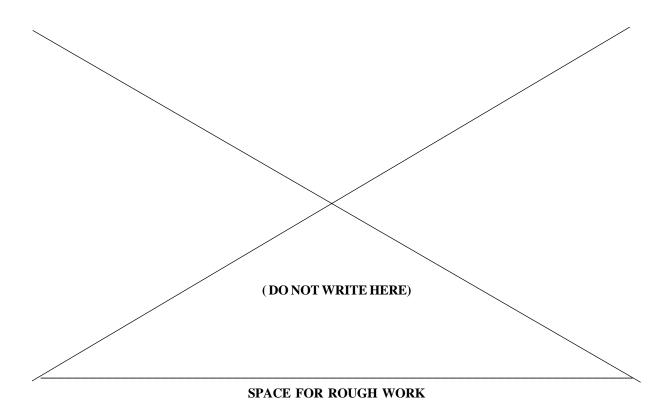
A Complete Solution For Engineering/Medical Entrance Examinations

MH-CET-2014 Subjects: Physics, Chemistry & Biology

Question Booklet Version	MH-CET-2014 Roll No.	Question Booklet Sr. No.
11		
(White this number on	Answer Sheet No.	(Write this number on
(Write this number on your Answer Sheet)		your Answer Sheet)

Day and Date: Thursday, 08th May, 2014

Duration: 3.00 hours
Total Marks: 720


This is to certify that, the entries of MH-CET Roll No. and Answer Sheet No. have been correctly written and verified.

Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 180 Objective Type Questions in the subjects of Physics (45), Chemistry (45) and Biology (90).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheet is issued separately at the start of the examination.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and MH-CET Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Ouestion Booklet.
- 5. Read each question carefully.
- 6. Select the correct answer from the four available options given for each question.
- 7. Mark the appropriate circle completely like this , for answering a particular question. Mark with Black ink ball point pen only.
- 8. Each question with correct response shall be awarded four (4) marks. There shall be negative marking. For wrong answers there will be deduction of one mark per question. One mark shall be deducted for marking two or more answers of same question, scratching or overwriting.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted.
- 10. Avoid overwriting and/or striking of answers once marked.
- 11. Rough work should be done only on the blank space provided on the Question Booklet. **Rough work should** not be done on the Answer Sheet.
- 12. The required Log-Antilog table will be provided along with the Question Booklet.
- 13. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 14. No candidate is allowed to leave the examination hall till the end of examination.
- 15. No marks will be deducted if a particular question is not attempted.

PHYSICS

1. In cyclotron, for a given magnet, radius of the semicircle traced by positive ion is directly proportional to

(v = velocity of positive ion)

- A) v^{-2}
- B) v^{-1}
- C) v
- D) v^2
- 2. A particle at rest is moved along a straight line by a machine giving constant power. The distance moved by the particle in time 't' is proportional to
 - A) $t^{\frac{1}{2}}$
- B) $t^{\frac{2}{3}}$
- C) t
- D) $t^{\frac{3}{2}}$
- 3. In insulators (C.B. is conduction band and V.B. is valence band)
 - A) V.B. is partially filled with electrons
 - B) C.B. is partially filled with electrons
 - C) C.B. is empty and V.B. is filled with electrons
 - D) C.B. is filled with electrons and V.B. is empty
- 4. An object of radius 'R' and mass 'M' is rolling horizontally without slipping with speed 'V'. is (g = acceleration due to gravity)
 - A) $\frac{2}{5} MR^2$ B) $\frac{MR^2}{2}$ C) MR^2 D) $\frac{3}{2} MR^2$

- 5. In Wheatstone's bridge, three resistors P, Q, R are connected in three arms in order and 4th arm s is formed by two resistors s₁ and s₂ connected in parallel. The condition for bridge to

be balanced is $\frac{P}{Q}$ =

- A) $\frac{R(s_1 + s_2)}{s_1 s_2}$ B) $\frac{s_1 s_2}{R(s_1 + s_2)}$ C) $\frac{R s_1 s_2}{(s_1 + s_2)}$ D) $\frac{(s_1 + s_2)}{R s_1 s_2}$

- 6. In common base circuit of a transistor, current amplification factor is 0.95. Calculate the emitter current if base current is 0.2 mA
 - A) 2 mA
- B) 4 mA
- C) 6 mA
- D) 8 mA
- 7. The ratio of magnetic dipole moment of an electron of charge 'e' and mass 'm' in Bohr's orbit in hydrogen atom to its angular momentum is
 - A) $\frac{e}{m}$
- B) $\frac{m}{a}$ C) $\frac{2m}{a}$
- D) $\frac{e}{2m}$
- 8. Gases exert pressure on the walls of the container because the gas molecules
 - A) have finite volume

B) obey Boyle's law

C) possess momentum

- D) collide with one another
- 9. Two coherent sources of intensity ratio ' α ' interfere. In interference pattern $\frac{I_{\text{max}} I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} =$
- B) $\frac{2\sqrt{\alpha}}{1+\alpha}$ C) $\frac{2\alpha}{1+\sqrt{\alpha}}$ D) $\frac{1+\alpha}{2\alpha}$
- 10. Light of wavelength λ_A and λ_B falls on two identical metal plates A and B respectively. The maximum kinetic energy of photoelectrons in $\boldsymbol{K}_{\boldsymbol{A}}$ and $\boldsymbol{K}_{\boldsymbol{B}}$ respectively, then which one of the following relations is true ? ($\lambda_A = 2 \lambda_B$)
 - A) $K_A < \frac{K_B}{2}$ B) $2 K_A = K_B$ C) $K_A = 2 K_B$ D) $K_A > 2 K_B$

- 11. If an electron in hydrogen atom jumps from an orbit of level n = 3 to an orbit of level n = 2, emitted radiation has a frequency (R = Rydberg's constant, C = velocity of light)
 - A) $\frac{3RC}{27}$
- B) $\frac{RC}{25}$ C) $\frac{8RC}{9}$
- D) $\frac{5RC}{36}$
- 12. In electromagnetic wave, according to Maxwell, changing electric field gives
 - A) stationary magnetic field
- B) conduction current

C) eddy current

D) displacement current

- 13. The de-Broglie wavelength of an electron in 4^{th} orbit is (r = radius of 1^{st} orbit)
 - A) $2\pi r$
- B) $4\pi r$
- C) 8πr
- D) $16\pi r$
- 14. A string of length 'L' and force constant 'K' is stretched to obtain extension 'l'. It is further stretched to obtain extension l_1 . The work done in second stretching is
 - A) $\frac{1}{2} K l_1 (2l + l_1)$ B) $\frac{1}{2} K l_1^2$ C) $\frac{1}{2} K (l^2 + l_1^2)$ D) $\frac{1}{2} K (l_1^2 l^2)$

- 15. The equiconvex lens has focal length 'f'. If it is cut perpendicular to the principal axis passing through optical centre, then focal length of each half is
 - A) $\frac{f}{2}$
- C) $\frac{3f}{2}$
- D) 2f
- 16. If 'N' is the number of turns in a circular coil then the value of self inductance varies as
 - A) N^0
- B) N
- $C) N^2$
- D) N^{-2}
- 17. Surface density of charge on a sphere of radius 'R' in terms of electric intensity 'E' at a distance 'r' in free space is

 $(\in_0 = \text{permittivity of free space})$

- $A) \in_0 E \left(\frac{R}{r}\right)^2 \qquad B) \frac{\in_0 ER}{r^2} \qquad C) \in_0 E \left(\frac{r}{R}\right)^2 \qquad D) \frac{\in_0 Er}{R^2}$

- 18. A body at rest starts sliding from top of a smooth inclined plane and requires 4 second to reach bottom. How much time does it take, starting from rest at top, to cover one-fourth of a distance?
 - A) 1 second
- B) 2 second
- C) 3 second
- D) 4 second
- 19. In vacuum, to travel distance 'd', light takes time 't' and in medium to travel distance '5d', it takes time 'T'. The critical angle of the medium is

- A) $\sin^{-1}\left(\frac{5T}{t}\right)$ B) $\sin^{-1}\left(\frac{5t}{3T}\right)$ C) $\sin^{-1}\left(\frac{5t}{T}\right)$ D) $\sin^{-1}\left(\frac{3t}{5T}\right)$

20. In electromagnetic spectrum, the frequencies of γ-rays, X-rays and ultraviolet rays are denoted by n_1 , n_2 and n_3 respectively then

A) $n_1 > n_2 > n_3$ B) $n_1 < n_2 < n_3$ C) $n_1 > n_2 < n_3$ D) $n_1 < n_2 > n_3$

21. In LCR series circuit, an alternating e.m.f. 'e' and current 'i' are given by the equations $e = 100 \sin (100 t) \text{ volt}$

 $i = 100 \sin \left(100 t + \frac{\pi}{3} \right) mA.$

The average power dissipated in the circuit will be

A) 100 W

B) 10 W

C) 5 W

D) 2.5 W

22. A block resting on the horizontal surface executes S.H.M. in horizontal plane with amplitude 'A'. The frequency of oscillation for which the block just starts to slip is (μ = coefficient of friction, g = gravitational acceleration)

A) $\frac{1}{2\pi}\sqrt{\frac{\mu g}{A}}$ B) $\frac{1}{4\pi}\sqrt{\frac{\mu g}{A}}$ C) $2\pi\sqrt{\frac{A}{\mu g}}$ D) $4\pi\sqrt{\frac{A}{\mu g}}$

23. A plane sound wave travelling with velocity 'v' in a medium A reaches a point on the interface of medium A and medium B. If velocity of sound in medium B is 2v, the angle of incidence for total internal reflection of the wave will be greater than $(\sin 30^{\circ} = 0.5 \text{ and } \sin 90^{\circ} = 1)$

A) 15°

B) 30°

C) 45°

D) 90°

24. A gas is compressed isothermally. The r.m.s. velocity of its molecules

A) increases

B) decreases

C) first increases and then decreases

D) remains the same

25. Two concentric spheres kept in air have radii 'R' and 'r'. They have similar charge and equal surface charge density ' σ '. The electric potential at their common centre is

 $(\in_0 = \text{permittivity of free space})$

A) $\frac{\sigma(R+r)}{\in_0}$ B) $\frac{\sigma(R-r)}{\in_0}$ C) $\frac{\sigma(R+r)}{2\in_0}$ D) $\frac{\sigma(R+r)}{4\in_0}$

26. The velocity of water in river is $9 \frac{\text{km}}{\text{hr}}$ of the upper surface. The river is 10 m deep. If the coefficient of viscosity of water is 10⁻² poise then the shearing stress between horizontal layers of water is

A)
$$0.25 \times 10^{-2} \frac{\text{N}}{\text{m}^2}$$

B)
$$0.25 \times 10^{-3} \text{ N/m}^2$$

C)
$$0.5 \times 10^{-3} \frac{\text{N}}{\text{m}^2}$$

D)
$$0.75 \times 10^{-3} \text{ N/m}^2$$

27. A sphere 'P' of mass 'm' moving with velocity 'u' collides head-on with another sphere 'Q' of mass 'm' which is at rest. The ratio of final velocity of 'Q' to initial velocity of 'P' is (e = coefficient of restitution)

A)
$$\frac{e-1}{2}$$

B)
$$\left\lceil \frac{e+1}{2} \right\rceil^{\frac{1}{2}}$$
 C) $\frac{e+1}{2}$ D) $\left\lceil \frac{e+1}{2} \right\rceil^2$

C)
$$\frac{e+1}{2}$$

D)
$$\left[\frac{e+1}{2}\right]^2$$

28. Magnetic induction produced at the centre of a circular loop carrying current is 'B'. The magnetic moment of the loop of radius 'R' is

 $(\mu_0 = \text{permeability of free space})$

A)
$$\frac{BR^3}{2\pi\mu_0}$$

B)
$$\frac{2\pi BR^3}{\mu_0}$$

C)
$$\frac{BR^2}{2\pi\mu_0}$$

B)
$$\frac{2\pi BR^3}{\mu_0}$$
 C) $\frac{BR^2}{2\pi\mu_0}$ D) $\frac{2\pi BR^2}{\mu_0}$

29. In air, a charged soap bubble of radius 'r' is in equilibrium having outside and inside pressures being equal. The charge on the drop is $(\in_0 = \text{permittivity of free space}, T = \text{surface tension})$ of soap solution)

A)
$$4\pi r^2 \sqrt{\frac{2T \in_0}{r}}$$

B)
$$4\pi r^2 \sqrt{\frac{4T \in_0}{r}}$$

C)
$$4\pi r^2 \sqrt{\frac{6T \in_0}{r}}$$

D)
$$4\pi r^2 \sqrt{\frac{8T \in_0}{r}}$$

- 30. A block is pushed momentarily on a horizontal surface with initial velocity 'v'. If '\mu' is the coefficient of sliding friction between the block and surface, the block will come to rest after time ('g' = acceleration due to gravity)
- B) $\frac{vg}{u}$ C) $\frac{v\mu}{g}$ D) $\frac{\mu g}{v}$
- 31. Two charges of equal magnitude 'q' are placed in air at a distance '2a' apart and third charge '-2q' is placed at midpoint. The potential energy of the system is $(\in_0 = \text{permittivity of free space})$
 - A) $-\frac{q^2}{8\pi\epsilon_0 a}$ B) $-\frac{3q^2}{8\pi\epsilon_0 a}$ C) $-\frac{5q^2}{8\pi\epsilon_0 a}$ D) $-\frac{7q^2}{8\pi\epsilon_0 a}$

- 32. An electron in potentiometer wire experiences a force 2.4 \times 10⁻¹⁹ N. The length of potentiometer wire is 6m. The e.m.f. of the battery connected across the wire is (electronic charge = 1.6×10^{-19} C)
 - A) 6 V
- B) 9 V
- C) 12 V
- D) 15 V
- 33. The dimensional formula for Reynold's number is
 - A) $[L^0 M^0 T^0]$

B) $[L^1 M^1 T^1]$

C) $[L^{-1} M^1 T^1]$

- D) $[L^1 M^1 T^{-1}]$
- 34. Calculate angular velocity of earth so that acceleration due to gravity at 60° latitude becomes zero. (Radius of earth = 6400 km, gravitational acceleration at poles = $10 \, \text{m/}_{2}$,
 - $\cos 60^{\circ} = 0.5$)
 - A) $7.8 \times 10^{-2} \text{ rad/s}$

B) $0.5 \times 10^{-3} \text{ rad/s}$

C) $1 \times 10^{-3} \text{ rad/s}$

- D) $2.5 \times 10^{-3} \text{ rad/s}$
- 35. A stationary object explodes into masses m₁ and m₂. They move in opposite directions with velocities V₁ and V₂. The ratio of kinetic energy E₁ to kinetic energy E₂ is
 - A) $\frac{m_2}{m_1}$ B) $\frac{m_1}{m_2}$

36. The moment of inertia of a thin uniform rod rotating about the perpendicular axis passing through one end is 'I'. The same rod is bent into a ring and its moment of inertia about the

diameter is ' I_1 '. The ratio $\frac{1}{I_1}$ is

- B) $\frac{8\pi^2}{3}$ C) $\frac{5\pi}{3}$
- D) $\frac{8\pi^2}{5}$
- 37. Three identical spheres each of mass 1 kg are placed touching one another with their centres in a straight line. Their centres are marked as A, B, C respectively. The distance of centre of mass of the system from A is
 - A) $\frac{AB + AC}{2}$ B) $\frac{AB + BC}{2}$ C) $\frac{AC AB}{3}$ D) $\frac{AB + AC}{3}$

- 38. The relation between force 'F' and density 'd' is $F = \frac{x}{\sqrt{d}}$. The dimensions of x are
 - A) $[L^{-\frac{1}{2}} M^{\frac{3}{2}} T^{-2}]$

B) $[L^{-1/2} M^{1/2} T^{-2}]$

C) $[L^{-1} M^{\frac{3}{2}} T^{-2}]$

- D) $[L^{-1} M^{\frac{1}{2}} T^{-2}]$
- 39. When a wave travels in a medium, displacement of a particle is given by $y = a \sin 2\pi$ (bt cx) where 'a', 'b', 'c' are constants. The maximum particle velocity will be twice the wave velocity if
 - A) b = ac
- B) $b = \frac{1}{aa}$
 - C) $c = \pi a$
- D) $c = \frac{1}{\pi a}$
- 40. Electromagnets are made of soft iron because soft iron has
 - A) high susceptibility and low retentivity
 - B) low susceptibility and high retentivity
 - C) low susceptibility and low retentivity
 - D) high susceptibility and high retentivity

41. The masses of three copper wires are in the ratio 1:3:5 and their lengths are in the ratio 5:3:1. The ratio of their resistance is

A) 25:1:125

B) 1:125:25

C) 125:1:25

D) 125:25:1

42. A body of mass 'm' is raised to a height '10 R' from the surface of earth, where 'R' is the radius of earth. The increase in potential energy is (G = universal constant of gravitation,M = mass of earth and g = acceleration due to gravity)

B) $\frac{\text{GMm}}{10 \text{R}}$ C) $\frac{\text{mgR}}{11 \text{G}}$ D) $\frac{10 \text{ GMm}}{11 \text{ R}}$

43. The angle θ between the vector $\vec{p} = \hat{i} + \hat{j} + \hat{k}$ and unit vector along x-axis is

A) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ B) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ C) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ D) $\cos^{-1}\left(\frac{1}{2}\right)$

44. A small metal ball of mass 'm' is dropped in a liquid contained in a vessel, attains a terminal velocity 'v'. If a metal ball of same material but of mass '8m' is dropped in same liquid then the terminal velocity will be

A) V

- B) 2V
- C) 4V
- D) 8V
- 45. A wooden block of mass 8 kg slides down an inclined plane of inclination 30° to the horizontal with constant acceleration 0.4 m/s². The force of friction between the block and inclined plane is $(g = 10 \text{ m/s}^2)$

A) 12.2 N

- B) 24.4 N
- C) 36.8 N
- D) 48.8 N

CHEMISTRY

46.	Which of the following	g complexes has lowe	est molar conductance	?						
	A) $CoCl_3 \cdot 3NH_3$		B) $CoCl_3.4NH_3$							
	C) $CoCl_3.5NH_3$		D) CoCl ₃ .6NH ₃							
47.	The volume of oxygen peroxide solution, is	evolved at STP, by o	decomposition of 0.68	g '20 volume' hydrogen						
	A) 2.24 mL	B) 22.4 mL	C) 224 mL	D) 2240 mL						
48.	What is the molality of dissolved in 40 g of wa		ing 200 mg of urea (1	molar mass 60 g mol ⁻¹)						
	A) 0.0825	B) 0.825	C) 0.498	D) 0.0013						
49.	Alkaline hydrolysis of racemate?	which among the fol	llowing compounds le	ads to the formation of a						
	A) 1-Bromo-1-pheny	lethane	B) 1-Chloro-3-meth	ylbutane						
	C) Bromoethane	CoCl ₃ · 3NH ₃ CoCl ₃ · 5NH ₃ Polume of oxygen evolved at STP, by decorded solution, is 2.24 mL B) 22.4 mL C) this the molality of a solution containing lived in 40 g of water? 0.0825 B) 0.825 C) dine hydrolysis of which among the following the hydrolysis of which among the following at 300 K, under a pressure of 100 kPa is 499.9 kJ Ch among the following group 16 elements Polonium B) Tellurium C) The polonium C)								
50.			-	om a volume of 5 m ³ to						
	A) 499.9 kJ	B) - 499.9 kJ	C) -99.5 kJ	D) 42495 kJ						
51.	Which among the follo	owing group 16 eleme	ents exists in more than	n two allotropic states?						
	A) Polonium	B) Tellurium	C) Selenium	D) Oxygen						
52.	Solubility of which am temperature ?	ong the following su	bstances in water incre	eases slightly with rise in						
	A) Potassium bromid	le	B) Potassium chlorid	de						
	C) Potassium nitrate		D) Sodium nitrate							
		CD L CE EOD DO	HIGH WORK							

- 53. Assuming enthalpy of combustion of hydrogen at 273 K, –286 kJ and enthalpy of fusion of ice at the same temperature to be + 6.0 kJ, calculate enthalpy change during formation of 100 g of ice
 - A) + 1622 kJ
- B) -1622 kJ
- C) +292 kJ
- D) -292 kJ
- 54. How is electrical conductance of a conductor related with length and area of cross section of the conductor?
 - A) $G = l \cdot a \cdot k^{-1}$

B) $G = k \cdot l \cdot a^{-1}$

C) $G = k. a. l^{-1}$

- D) $G = k. l. a^{-2}$
- 55. What is the orbital angular momentum of an electron in 'f' orbital?
 - A) $\frac{1.5 \, h}{\pi}$
- B) $\frac{\sqrt{6} \, h}{\pi}$
- C) $\frac{\sqrt{3} h}{\pi}$
- D) $\frac{\sqrt{3} \text{ h}}{2\pi}$
- 56. Which statement is NOT correct about fullerene C_{60} ?
 - A) It contains 20 six membered rings and 12 five membered rings
 - B) All carbon atoms undergo SP² hybridization
 - C) A six membered ring is fused with six membered rings only
 - D) A five membered ring is fused with six membered ring only
- 57. The product of molar concentrations of hydrogen ions and hydroxide ions in a 0.01 M aqueous solution of sodium chloride is known as
 - A) Hydrolysis constant of salt
- B) Dissociation constant of acid
- C) Dissociation constant of base
- D) Ionic product of water

58. Select the coloured compound amongst the following:

(Atomic no. Ti = 22, Cr = 24, Cu = 29, Zn = 30)

- A) TiCl₄
- B) CrCl₃
- C) ZnCl₂
- D) CuCl
- 59. Which among the following solids crystalises as a face centred cube?
 - A) Iron
- B) Rubidium
- C) Uranium
- D) Platinum
- 60. What is the pH of millimolar solution of ammonium hydroxide which is 20% dissociated?
 - A) 3.699
- B) 10.301
- C) 4.691
- D) 9.301
- 61. What is the geometry of molecule of bromine penta fluoride?
 - A) square planar

B) trigonal bipyramidal

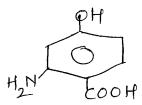
C) square pyramidal

- D) octahedral
- 62. Identify the compound 'D' in the following series of reactions

(Minor product) product)

'B' $\xrightarrow{\text{HI}, \Delta}$ 'D' + 'E'

(Major product) (Minor product)


B)
$$CH_3 - CH_2 - CH_3$$

$$I CH_3$$

C)
$$CH_3 - CH - CH_2 - CH_2 - CH_2$$

C)
$$CH_3 - CH_2 - CH_2 - I$$
 D) $CH_3 - CH_2 - CH_2 - I$

63. Write IUPAC name of following compound

- A) 2-Amino-4-hydroxybenzoic acid
- B) 6-Amino-4-hydroxybenzoic acid
- C) 3-Amino-4-carboxyphenol
- D) 2-Carboxy-5-hydroxyaniline
- 64. Which among the following metals is employed to provide cathodic protection to iron?
 - A) Zinc
- B) Nickel
- C) Tin
- D) Lead
- 65. Oxidation number of nitrogen in which among the oxides of nitrogen is the lowest?
 - A) Nitric oxide

B) Nitrous oxide

C) Nitrogen dioxide

- D) Nitrogen trioxide
- 66. Select the ether among following that yields methanol as one of the products on reaction with cold hydroiodic acid
 - A) 1-Methoxybutane

- B) 1-Methoxy-2-methylpropane
- C) 2-Methoxy-2-methylpropane
- D) Methoxybenzene
- 67. Rate law for the reaction $A + B \rightarrow \text{product}$ is rate = k [A]² [B]. What is the rate constant, if rate of reaction at a given temperature is 0.22 Ms⁻¹, when [A] = 1 M and [B] = 0.25 M.
 - A) $3.52 \text{ M}^{-2} \text{ s}^{-1}$

B) $0.88~M^{-2}~s^{-1}$

C) $1.136 \text{ M}^{-2} \text{ s}^{-1}$

D) $0.05 \text{ M}^{-2} \text{ s}^{-1}$

- 68. Presence of nitrogen in which among the following compounds can NOT be detected by Lassaigne method?
 - A) Hydrazine
- B) Aniline
- C) p-Toluidine
- D) Picric acid
- 69. 20 ml solution of 0.1 M ferrous sulphate was completely oxidised using a suitable oxidising agent. What is the number of electrons exchanged?
 - A) 1.204×10^{22}
- B) 193
- C) 1930
- D) 1.204×10^{21}
- 70. Among the following select the alkane that is expected to have lowest boiling point
 - A) Hexane

B) 2-Methylpentane

C) 3-Methylpentane

D) 2, 2-Dimethylbutane

71.
$$(Br_2/red P)$$
 'A' $(Br_2/red P)$ 'C' $(ii) H_2O$ 'D'

Identify the compound 'D' in above mentioned series of reactions.

- 72. Which among the following gases can be liquified easily?
 - A) Chlorine
- B) Nitrogen
- C) Oxygen
- D) Hydrogen
- 73. What is the mass of one molecule of yellow phosphorus? (Atomic mass, P = 30)
 - A) $1.993 \times 10^{-22} \text{ kg}$

B) 1.993×10^{-19} mg

C) $4.983 \times 10^{-20} \text{ mg}$

- D) $4.983 \times 10^{-23} \text{ kg}$
- 74. Ozone is present as a chief constituent in which region of the atmosphere?
 - A) Troposphere

B) Stratosphere

C) Mesosphere

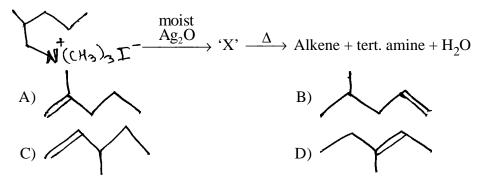
D) Thermosphere

- 75. The plot of square root of frequency of X-ray emitted against atomic number led to suggestion of which law/rule?
 - A) Periodic law

B) Modern periodic law

C) Hund's rule

- D) Newland's law
- 76. The compound that yields only ketonic compound/s on ozonolysis is
 - A) But-2-ene


B) Pent-2-ene

- C) 2, 3-Dimethylbut-2-ene
- D) 2-Methylbut-2-ene
- 77. Which among the following metals is refined by electrolytic method?
 - A) Aluminium
- B) Bismuth
- C) Tin
- D) Lead
- 78. The two monomers used in the preparation of dextron are
 - A) 3-hydroxy butanoic acid and 3-hydroxy pentanoic acid
 - B) ∈ amino caproic acid and glycine
 - C) Isobutylene and isoprene
 - D) Lactic acid and glycolic acid
- 79. Which oxyacid of sulphur contains S-S single bond?
 - A) Oleum

B) Marshall's acid

C) Dithionic acid

- D) Thiosulphuric acid
- 80. Amongst the followings, select the element having highest ionization enthalpy
 - A) Sodium
- B) Potassium
- C) Beryllium
- D) Magnesium
- 81. Identify the alkene that is produced in the following series of reactions

82. 'X' is an optically active alkane having lowest molecular mass. Predict the structure of the major product obtained on monochlorination of 'X'

A)
$$CH_3 - CH_2 - CH_2 - CH_3 - CH_2 - CH_3 - CH_2 - CH_3$$

B)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

$$CH_3 - CH_2 - CH_2 - CH_3$$

$$CI$$

$$CH_3$$

C)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$$

$$CH_3$$
D) $Cl - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

- 83. Butylated hydroxy toluene is used in
 - A) preventing oxidative rancidity of fats
- B) preserving food grains
- C) killing bacteria in living tissues
- D) reducing stress and anxiety
- 84. Deficiency of which vitamin causes degeneration of spinal cord?
 - A) E
- B) K
- $C) B_{12}$
- D) A
- 85. Bond order of which among the following molecules is zero?
 - A) F₂
- B) O_2
- C) Be₂
- D) Li₂
- 86. Benzene can be conveniently converted into n-propyl benzene by
 - A) Friedel Craft alkylation with n-propyl chloride
 - B) Friedel Craft acylation with propionyl chloride followed by Wolff Kishner reduction
 - C) Friedel Craft acylation with propionyl chloride followed by catalytic hydrogenation
 - D) Friedel Craft acylation with propionyl chloride followed by reduction with $LiAlH_4$

87. Select the diamagnetic complex ion amongst the following complexes

(Atomic No. Fe = 26, Co = 27)

A) $K_3[Fe(CN)_6]$

B) $[\text{Co(NH}_3)_6]\text{C}l_3$

C) $K_3[FeF_6]$

- D) $K_3[CoF_6]$
- 88. One mole of stachyose on hydrolysis yields
 - A) 1 mole of glucose + 1 mole of fructose + 2 mole of galactose
 - B) 2 mole of glucose + 1 mole of fructose + 1 mole of galactose
 - C) 1 mole of glucose + 2 mole of fructose + 1 mole of galactose
 - D) 2 mole of glucose + 2 mole of fructose
- 89. An organic compound 'X' having molecular formula $C_4H_{11}N$ reacts with p-toluene sulphonyl chloride to form a compound 'Y' that is soluble in aqueous KOH. Compound 'X' is optically active and reacts with acetyl chloride to form compound 'Z'. Identify the compound 'Z'
 - A) CH₃CH₂CH₂CH₂NHCOCH₃
- CH₃
 B) CH₃CH₂CHNHCOCH₃
- CH₃
 C) CH₃ CHCH₂NHCOCH₃
- CH₃
 D) CH₃ C NHCOCH₃
 CH₂
- 90. If average velocity of a sample of gas molecules at 300 K is 5 cm s⁻¹, what is RMS velocity of same sample of gas molecules at the same temperature? (Given, $\alpha : u : v = 1 : 1.224 : 1.127$)
 - A) 6.112 cm/s
- B) 4.605 cm/s
- C) 4.085 cm/s
- D) $5.430 \, \text{cm/s}$

11

BIOLOGY

91.	Animals obtain all their	r carbon through		
	A) plants	B) soil	C) air	D) water
92.	Which one of the followard A) embryo has singled B) leaves show paralactic C) flowers are generated D) vascular bundles a	e cotyledon lel venation ally trimerous	·	?
93.	How many NAD mole	cules get reduced in o	complete oxidation of	one glucose molecule?
	A) 2	B) 5	C) 10	D) 12
94.	Which one of the follow	wing is used in the pr	oduction of citric acid	1?
	A) Aspergillus niger		B) Rhizopus arrhizi	us
	C) Acetobacter aceti		D) Saccharomyces of	cerevisiae
95.	What will be the number A) 400	er of histone molecule B) 450	es in a chromatin fibre C) 500	having 50 nucleosomes? D) 1000
96.	Which one of the followable A) Thallophyta	wing is the first group	B) Bryophyta	
	C) Pteridophyta		D) Spermatophyta	
97.		4 chromosomes in its	root cells. What would	other cells is crossed with I be the ploidy of embryo
	A) 24 and 48	B) 24 and 24	C) 48 and 72	D) 24 and 36
98.	Which one of the follow	wing has bast fibres?	•	
	A) parenchyma	B) sclerenchyma	C) phloem	D) xylem
99.	In how many interlock	ing rings are the carbo	on atoms arranged in a	a steroid molecule?
	A) 1	B) 2	C) 3	D) 4
100.	What are the spindle fit poles called?	ibres that connect the	e centromere of chron	nosome to the respective
	A) Astral rays		B) Interpolar fibres	
	C) Chromosomal fibr	res	D) Inter chromosom	nal fibres
101.	In plant breeding, the ein a particular organism	-	nts/seeds having the d	iverse alleles of all genes
	A) gene bank	B) cDNA library	C) genomic library	D) germ plasm

102.	Acetylation of Pyruva	ate takes place in the			
	A) perimitochondria	al space	B)	mitochondrial ma	atrix
	C) cristae		D)	F ₁ particles	
103.	Cross pollination doe	s not occur in			
	A) allogamous flow	rers	B)	geitonogamous f	lowers
	C) cleistogamous flo	owers	D)	chasmogamous f	lowers
104.	Which one of the foll	owing is a dicot weed	dicide	?	
	A) 2, 4-D	B) NAA	C)	IBA	D) IAA
105.	Senescense in plants l	eads into	of	cells.	
	A) increase in size		B)	increase in numb	er
	C) death		D)	differentiation	
106.	In Albizzia, vegetative	e propagation takes p	lace v	vith the help of	
	A) fasciculated tube	erous roots	B)	epiphyllous buds	
	C) subaerial branch	es	D)	nonfleshy roots	
107.	Which of the following	ng cross will give rec	essive	e progeny in F ₁ ger	neration ?
	A) $TT \times tt$	B) $Tt \times TT$	C)	$tt \times tt$	D) $TT \times TT$
108.	Select the correct state	ements from the follo	wing	:	
	I. Endosperm is ge	nerally triploid in ang	giospe	erms.	
	II. All angiosperms	have monosporic an	d end	osporic embryo sa	ic.
	III. Angiosperms are	e characterised by dou	ıble-fe	ertilization.	
	IV. All angiosperms	show-indirect polling	ation	and siphonogamy.	
	A) I, II and III	B) II, III and IV	C)	I, III and IV	D) I, II, III and IV
109.	The structure produci	ng basidium in Basid	liomy	cetes is formed by	the fusion of
	A) two vegetative co	ells	B)	two male gamete	es
	C) two female game	etes	D)	male and female	gametes
110.	The sequence of nucl	eotides AUGCUUCI	UC in	dicates that it is a	segment of
	A) sense strand of I	ONA	B)	anti sense strand	of DNA
	C) RNA		D)	polypeptide chair	n
111.	The largest collection	of herbarium in India	a is		
	A) Central National	Herbarium, Kolkata			
	B) Southern Circle	Herbarium, Coimbate	ore		
	C) Central Circle H	erbarium, Allahabad			
	D) Blatter Herbarius	m, Mumbai			

112.	Enzyme enolase car of wh	•		of 2 PG	A to phosph	oenol Pyruvic acid in presence
	A) Mn ⁺⁺	B)]	Fe ⁺⁺	C)	Mg^{++}	D) Zn ⁺⁺
113.	Excess of Mangane	ese inhibi	ts the translo	cation o	of	_ to the shoot apex.
	A) Calcium	B) 1	Potassium	C)	Iron	D) Magnesium
114.	The correct sequen A) Diakinesis → B) Leptotene →	Pachyte	$ne \rightarrow Diplo$	tene \rightarrow	Zygotene -	-
	C) Pachytene →		_		_	
	D) Leptotene →		-		-	
115.	Capsule is a kind o					·
	A) simple, dry an	d dehisce	ent	B)	simple, dry	and indehiscent
	C) an aggregate			D)	simple and	fleshy
116.	The inactive protox	kin is acti	vated in the g	gut of th	e insect by	
	A) acidic pH			B)	alkaline pH	
	C) low temperatu	re		D)	high temper	rature
117.	In angiosperms, the divisions.	formatio	n of two mal	e gamet	es from a pol	llen grain involves
	A) one meiotic ar	nd one mi	totic	B)	two meiotic	and two mitotic
	C) only two mito	tic		D)	only two me	eiotic
118.	In a plant cell the D	iffusion l	Pressure Def	icit is ze	ero when it is	S
	A) plasmolysed	B) 1	turgid	C)	flaccid	D) incipient
119.	The life cycle of al	gae such	as <i>Spirogyra</i>	is		
	A) haplontic			B)	diplontic	
	C) haplo-diplonti	c		D)	diplo-haplo	ntic
120.	During which stage	of Propha	ase I, genetic	recomb	ination of pa	rental characters, takes place?
	A) Zygotene	B)]	Pachytene	C)	Diplotene	D) Diakinesis
121.	Multicostate diverg	gent reticu	ılate venatio	n is seer	in	leaf.
	A) Zizyphus	B)]	Bamboo	C)	Castor	D) Mango
122.	Synthesis of one gl	ucose mo	lecule requi	res	reduce	ed NADP molecules.
	A) 6	B)	12	C)	18	D) 24
123.	The arrangement of	f vascular	tissue in had	drocenti	ric vascular b	oundle is
	A) concentric	B) 1	radial	C)	collateral	D) bicollateral

-21-

124.	'Cry' gene is obtained	from		
	A) Agrobacterium tu	mefaciens	B) Bacillus thuring	iensis
	C) Rhizobium legum	inosarum	D) Rhizobium phas	eoli
125.	Identify the incorrect n	natch between the pro	otein and its role.	
	A) Keratin – structur	-		
	B) Immunoglobulins	- protection of body	against diseases	
	C) Haemoglobin – tr	ansport of O ₂ in mus	scles	
	D) Thrombin – blood	clotting		
126.	In India, research in ge	netic modification of	forganisms and safety	issues are controlled by
	A) DBT	B) IARI	C) CSIR	D) GEAC
127.	Guttation occurs through	gh		
	A) roots	B) hydathode	C) trichome	D) stomata
128.	•	· ·		g to get married, wants to
	know the chances of ha		-	D) 050/
	A) 100%	B) 75%	C) 50%	D) 25%
129.	A simple, living perma	nent tissue which is a		
	A) Collenchyma		B) Chlorenchyma	
	C) Aerenchyma		D) Parenchyma	
130.	Which of the following	g show dimorphic chl	loroplast?	
	A) Mango	B) Castor	C) Banyan	D) Amaranthus
131.	Gross primary product	ivity is the rate of pro	oduction of	during photosynthesis.
	A) organic matter		B) oxygen	
	C) carbon di-oxide		D) Chlorophyll	
132.	Flowers showing basip	etal succession are o	bserved in	
	A) Caesalpinia and C	Clerodendron	B) Jasmine and Go	ld mohar
	C) Gold mohar and C	Caesalpinia	D) Clerodendron an	nd Jasmine
133.	The total number of typ	es of gametes produc	ced in a cross between	a negro and albino parent
	is			
	A) 64	B) 16	C) 08	D) 04
134.	Enzymes required for p	phosphorylation are l	ocated in o	f chloroplast.
	A) Peristromium	B) Plastidome	C) Stroma	D) Quantosome

135.	Afforestation is A) restoring a forest		B) plantation in barren lands	
	C) cultivation under agr	iculture	D) jhum cultivation	
136	Cellular organization of b			
150.	A) Annelida	ody is present in	B) Platyhelminthes	
	C) Porifera		D) Urochordata	
137		of digastion the ar	zymes at location 'X' and 'Y' are respe	otivals
137.				cuvery
	proteins \xrightarrow{X} proteose			
	A) Chymotrypsin and p	epsin	, 1 ,1	
	C) Ptyalin and pepsin		D) Trypsin and di-peptidase	
138.	Find out the correct match			
	Column I	Column 1		
	i. Corpus luteum	_	Degeneration of endometrium	1
	ii. Pineal gland	Vasopress	<u>*</u>	
	iii. Pars nervosa	Coherin	3 3	m
	A) i only		B) i and ii	
	C) iii only		D) ii and iii	
139.	The colostrum provides_			
	• •	· ·	B) Naturally acquired passive immun	•
	C) Artificially acquired	active immunity	D) Artificially acquired passive immu	nity
140.	Identify and select the cor			
	Ι	II	Ш	
	A) Earthworm – A			
	, ,		Species	
	,		Division	
	,		Class	
141.	The structural unit of bone			
	A) chondrin B) cyton	C) osteon D) ossein	
142.	The stato-acoustic receptor	or responds to cha	•	
	A) Light and pressure		B) Pressure and touch	
	C) Pain and pressure		D) Sound and equilibrium	
143.	The chromosome with cer	ntromere near the	end is called	
	A) Acrocentric		B) Metacentric	
	C) Sub-metacentric		D) Telocentric	

144.	One of the following is NOT a possible re	eason for use of CNG in automobiles	
	A) It can be adulterated	B) It is cheaper than petrol	
	C) It burns more efficiently	D) It reduces pollution	
145.	Oviparous mammal is		
	A) Equus	B) Macropus	
	C) Ornithorhynchus	D) Pteropus	
146.	The salivary amylase shows maximum dia	gestive action at pH	
	A) 3.6 B) 6.8	C) 7.5 D) 8.5	
147.	The central hollow portion of the vertebra	a is called	
	A) Neural canal	B) Central canal	
	C) Auditory canal	D) Vertebro-arterial canal	
148.	The depolarization of nerve membrane tal	kes place through influx ofions.	
	A) Calcium B) Potassium	C) Sodium D) Magnesium	
149.		ote growth of new blood vessels, thus helping i	in
	wound healing?	D) TDA	
	A) HUMULIN C) TGF – B	B) TPA D) G 1 antitruncin	
	,	D) $\alpha - 1$ antitrypsin	
150.	Select the correct statement regarding the		
	A) Surround axon of myelinated nerve fB) Support muscle fibres	nore	
	C) Found in Haversian system of bones		
	D) Form basement membrane of epitheli		
151	The correct match is		
131.	I. DCT – Secretion of H ⁺	and K ⁺ ions	
	II. Henle's loop – Reabsorption of		
		ietal layer of Bowman's capsule	
	•	lar blood pressure activates it to release rennin	
	A) III B) II	C) I D) IV	
152.	The diurnal rhythms are regulated by		
	A) Adrenalin B) Melatonin	C) Serotonin D) Vasopressin	
153.	In DNA fingerprinting technique, fragments.	probe is used for hybridization of DN.	A
	A) Double stranded RNA	B) Double stranded non-radio active DNA	
	C) Single stranded radio active DNA	D) Single stranded radio active RNA	

154	Find	I the Odd one out :								
154.		Adamsia	B)	Astraea	C)	Physalie	a	D)	Pleurobrachia
155	,	totipotent cell can	ĺ		Ο,	1 11/5000			,	
133.		Bud	10111	ı a	B)	Cell me	mhi	rona		
	,	Cell organelle			,			iew orgai	nie	zm
156		_				-				
156.		nodal tissue locate				_				
	,	SA node	ŕ	AV node		AV bun		D	')	Purkinje fibres
157.		ch of the following			paı	turition '	?			
		ACTH, HCG, Ox	-							
	B)	ACTH, Corticoste	eroid	l, Oxytocin						
	C)	Corticosteroid, A0	СТН	, Prostaglandin						
	D)	ACTH, Progester	on, l	HCG						
158.	The	primary lymphoid	orga	n is						
	A)	Tonsils			B)	Payer's	pate	ches		
	C)	Lymph nodes			D)	Thymus	3			
159.	Syna	apse is								
	A)	Crossing over bety	weer	n non-homologou	ıs ch	romosoi	nes			
	B)	Pairing of homolo	gous	schromosomes						
	C)	Junction between	axoı	n and dendrites of	f tw	o differe	nt r	neurons		
	D)	Zig zag junctions	in ca	rdiac muscle fibr	es					
160.	Whi	ch of the following	aniı	mal has enucleate	ed er	ythrocyt	es?)		
	A)	Earthworm	B)	Sepia	C)	Frog		D)	Rat
161.	Whi	ch of the following	pro	duces erythropoi	etin	?				
		Kidney	_	Pancreas		Pineal g	lan	d D)	Thyroid gland
162.	Iden	atify the correct ma	tch f	rom the Columns	I. I	I and III.				
		I		П	,			П	Ι	
	1.	Interstitial cells		a. Cortex of	ova	ry	i.	Follicul	ar	fluid
	2.	Sertoli cells		b. Ovarian fo		•	ii.	Progeste	ere	one
	3.	Granulosa cells		c. Testis			iii.	Attachn	ne	nt of sperm bundle
	4.	Cells of corpus lut	eum	d. Seminifer	ous	tubules				-
		2-a-iii, 1-c-iv, 3-b-			B)	1-c-iv, 2	2-d-:	iii, 3-b-i,	4.	-a-ii
	C)	1-d-iii, 2-a-iv, 3-b-	-i, 4-	c-ii	D)	2-d-iii,	1-c-	iv, 3-a-ii,	, 4	-b-iv

163. Which of the following is correct match? Ш II A) Thalassemia a) XO i) Flat nose, simian crease B) Down's syndrome b) 42 AA + XYii) Webbing of neck C) Turner's syndrome c) 44 AA + XXXiii) Anaemia, jaundice D) Klinefelter's syndrome d) 44 AA + XXYiv) Tall thin eunuchoid 164. Which is CORRECT regarding genetically engineered insulin using E. coli? A) Difficult to purify B) Obtained in large unlimited quantities C) Possibility of transmission of animal diseases D) Insulin obtained varies in chemical structure 165. Dobson unit is used in measurement of ______level. A) Chlorofluoro carbons B) Nitrous oxide C) Ozone D) UV – B radiation 166. In cockroach, the common duct of salivary reservoir opens at the base of the _____ B) Maxilla A) Pharynx C) Mandible D) Hypopharynx 167. The wall of urinary bladder in humans shows a thick layer of smooth muscle called_ C) Deltoid A) Dartos B) Detrusor D) Depressor 168. Identify the correct match: **Accessory glands Functions** i. Seminal vesicles a. Lubricates vagina b. Provide energy, coagulation of sperm ii. Prostate gland iii. Cowper's gland c. Neutralizes acidity of vagina A) i-b, ii-c, iii-a B) i-c, ii-b, iii-a C) i-a, ii-c, iii-b D) i-c, ii-a, iii-b 169. The technique used to block the passage of sperm in male___ A) Tubectomy B) Vasectomy C) Coitus interruptus D) Rhythm method 170. Find the incorrect match: I П Ш i. Crab Sacculina Interaction ++ ii. Human being Mosquito Interaction -+ iii. Sea anemone Hermit crab Interaction +0C) iii and i A) i only B) ii and iii D) ii only 171. The structure which prevents the entry of food particles into the respiratory passage is ____ A) Epiglottis B) Glottis C) Larynx D) Pharynx

172. Identify vertebro	ochondral ribs from the fol	llowing:	
A) All 12 pairs	s of ribs	B) 1 st to 7 th pairs of	of ribs
C) 8^{th} , 9^{th} and	10 th pairs of ribs	D) 11 th and 12 th pa	airs of ribs
173. "Testis are extra	abdominal in position". W	hich of the following is	most appropriate reason?
A) Narrow pel	vis in male		
B) Special pro	tection for testis		
C) Prostate gla	and and seminal vesicles of	occupy maximum space	e
D) $2.0 - 2.5^{\circ}$ C	C lower than the normal be	ody temperature	
174. The Malignant r	nalaria is caused by		
A) Plasmodius	m vivax	B) Plasmodium me	alariae
C) Plasmodium	m ovale	D) Plasmodium fai	lciparum
175. The total number	er of podomeres in each le	g of cockroach is	
A) 5	B) 6	C) 7	D) 8
176. Which of the fol	lowing store proteins?		
A) Chromopla	sts B) Aleuroplasts	C) Amyloplasts	D) Elaioplasts
177. Pneumotaxic cer	ntre is located in		
A) Medulla ob	longata	B) Pons	
C) Cerebrum		D) Diencephalon	
178. In case of a coup	ple where a man is having	g very low sperm cour	nt, which of the following
_	e suitable for fertilization '	?	
A) Infra uterin	e transfer		
•	ra cytoplasmic fallopian tr	ransfer	
C) Artificial in			
D) Intra cytopl	lasmic sperm injection		
•	rimates occurred in	epoch.	
A) Palaeocene	B) Oligocene	C) Miocene	D) Eocene
180. Which of the fol	lowing statements correct	ly correlates with the d	iagrams?
		7	Post-reproductive
			← Reproductive
		A CONTRACTOR OF THE PROPERTY O	Pre-reproductive
A) a and h ara	steady population	B) a and d are decl	ining population
A) a and b are	sicady population	b) a and d are deci	mmg population

D) b and d are declining population

C) c and d are growing population

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
				1		0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
	İ					0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26	29
						1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584						3	6	9	12	15	19	22	25	28
						1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24
	ĺ					2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
						2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648						2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
0.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6

ANTILOGARITHMS

ГТ	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5		7
0.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
0.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
0.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
0.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
0.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
0.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
0.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
0.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
0.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
0.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
0.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
0.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
0.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
0.64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
0.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
0.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
0.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
0.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
0.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
0.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
0.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
0.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11
0.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
0.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
0.75	5623	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
0.76	5754	5768	5781	5794	5808	5821	5834	5848	5861	5875	1	3	4	5	7	8	9	11	12
0.77	5888	5902	5916	5929	5943	5957	5970	5984	5998	6012	1	3	4	5	7	8	10	11	12
0.78	6026	6039	6053	6067	6081	6095	6109	6124	6138	6152	1	3	4	6	7	8	10	11	13
0.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13
0.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
0.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
0.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
0.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
0.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
0.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
0.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
0.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
0.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16
0.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
0.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
0.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
0.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
0.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
0.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
0.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
0.96	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
0.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
0.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
0.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

PROVISIONAL KEY 180 QUESTIONS)

Q.No.	Key	Q.No.	Key
1	С	31	D
2	D	32	В
3	С	33	Α
4	В	34	D
5	Α	35	Α
6	В	36	В
7	D	37	D
8	С	38	Α
9	В	39	D
10	Α	40	Α
11	D	41	D
12	D	42	D
13	С	43	Α
14	Α	44	С
15	D	45	С
16	С	46	Α
17	С	47	С
18	В	48	Α
19	С	49	Α
20	Α	50	Α
21	D	51	С
22	Α	52	В
23	В	53	В
24	D	54	С
25	Α	55	С
26	В	56	С
27	С	57	D
28	В	58	В
29	D	59	D
30	Α	60	В

MH-CET-2014 (1						
Q.No.	Key					
61	С					
62	В					
63	Α					
64	Α					
65	В					
66	С					
67	В					
68	Α					
69	D					
70	D					
71	В					
72	Α					
73	В					
74	В					
75	В					
76	С					
77	Α					
78	D					
79	С					
80	С					
81	Α					
82	Α					
83	Α					
84	С					
85	С					
86	В					
87	В					
88	Α					
89	В					
90	D					

30 QUESTIONS)						
Q.No.	Key					
91	Α					
92	D					
93	С					
94	Α					
95	В					
96	С					
97	D					
98	С					
99	D					
100	С					
101	D					
102	Α					
103	С					
104	Α					
105	С					
106	D					
107	С					
108	С					
109	A C					
110	С					
111	Α					
112	С					
113	Α					
114	В					
115	Α					
116	В					
117	С					
118	В					
119	Α					
120	В					

QUESTIONS)								
Ω.No.	Key	Q.No.	Key					
91	Α	121	С					
92	D	122	В					
93	С	123	Α					
94	Α	124	В					
95	В	125	С					
96	С	126	D					
97	D	127	В					
98	С	128	D					
99	D	129	Α					
100	С	130	D					
101	D	131	Α					
102	Α	132	D					
103	С	133	С					
104	Α	134	D					
105	С	135	В					
106	D	136	С					
107	С	137	В					
108	С	138	С					
109	Α	139	В					
110	С	140	D					
111	Α	141	С					
112	С	142	D					
113	Α	143	Α					
114	В	144	Α					
115	Α	145	С					
116	В	146	В					
117	С	147	Α					
118	В	148	С					
119	Α	149	С					
120	В	150	Α					

Q.No.	Key
151	С
152	В
153	C B C
154	D
155	D B
156	В
157	В
158	D C
159	С
160	D
161	Α
162	В
163	D B C D
164	В
165	С
166	D
167	В
168	Α
169	В
170	А
171	Α
172	С
173	D
174	D D A
175	Α
176	B B C
177	В
178	
179	А
180	В