Question Booklet Series

CODE :- 14

Time Allowed: Two Hours

Marks: 100

Name:

PHYSICS

Roll No.

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Phy

Series-A⁻

SEAL

(A) $[ML^{2}T^{2}]$ and $[MLT^{-1}]$ (C) $[ML^{3}T^{1}]$ and $[ML^{2}T^{-2}]$	constant and angular momentum are respectively (B) [ML ² T ⁻¹] and [ML ² T ⁻¹] (D) [MLT ⁻¹] and [MLT ⁻²]
Q.2. Which of the following implies the grea	test precision?
(A)10.1	(B) 10.10
(C) 10.100	(D) 10.1000
Q.3.Which of the following is NOT one of the	e fundamental quantities in physics?
(A) time -	(B) length
(C) weight	(D) mass
Q.4. SI unit of the power of a lens is	
(A) diopter	(B) horse power
(C) metre	
	(D) watt
Q.5.In physics, a radian per second is a unit of	
(A) angular displacement	(B) angular velocity
(C) angular acceleration	(D) angular momentum.
Q.6. Dimensions of coefficient of viscosity is	::
$(A)[M^2L^2_1T^2_1]$	(B) $[M^2LT^2]$
(C) [ML⁻¹T⁻¹]Q.7. A body of mass m moving with velocity	(D) $[MLT^2]$.
	u collides with a stationary body of mass 2 m and
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is 	u collides with a stationary body of mass 2 m and the system after collision, is (C) 2u (D) u/4
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion 	u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is 	u collides with a stationary body of mass 2 m and the system after collision, is (C) 2u (D) u/4
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9.The acceleration due to gravity on the mother time period of a pendulum whose length of the period of the	r u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward bon is 1.6 meters per second square. On the moon
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9.The acceleration due to gravity on the mother time period of a pendulum whose leng (A)π seconds 	 r u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward pon is 1.6 meters per second square. On the moon, gth is 6.4 meters will be (B) 2π seconds
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9.The acceleration due to gravity on the mother time period of a pendulum whose length of the period of the	r u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward bon is 1.6 meters per second square. On the moon, gth is 6.4 meters will be
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A)3u (B) u/3 Q.8.For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9.The acceleration due to gravity on the mother time period of a pendulum whose leng (A)π seconds 	 u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward pon is 1.6 meters per second square. On the moon, gth is 6.4 meters will be (B) 2π seconds (D) 8π seconds
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A) 3u (B) u/3 Q.8. For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9. The acceleration due to gravity on the mothet time period of a pendulum whose leng (A) π seconds Q.10. Bernoulli's Principle is a statement of (A) energy conservation in dynamic fluids (B) momentum conservation in dynamic fluids (B) momentum conservation in dynamic fluids. Q.11. The velocity of a body depends on time (A) uniform acceleration 	the collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward bon is 1.6 meters per second square. On the moon, gth is 6.4 meters will be (B) 2π seconds (D) 8π seconds (D) 8π seconds (D) 8π seconds (D) 8π seconds
 Q.7. A body of mass m moving with velocity coalesce to form one body. The speed of (A) 3u (B) u/3 Q.8. For an object moving in uniform circular The instantaneous acceleration vector is (A) tangent to the path of motion (C) directed radially outward Q.9. The acceleration due to gravity on the mothet time period of a pendulum whose leng (A) π seconds (C) 4π seconds Q.10. Bernoulli's Principle is a statement of (A) energy conservation in dynamic fluids (B) momentum conservation in dynamic fluids. Q.11. The velocity of a body depends on time a statement of a body depends on time. 	r u collides with a stationary body of mass 2 m and f the system after collision, is (C) 2u (D) u/4 motion with constant speed, the direction of (B) equal to zero (D) directed radially inward bon is 1.6 meters per second square. On the moon, gth is 6.4 meters will be (B) 2π seconds (D) 8π seconds (D) 8π seconds

kinetic energy		is conserved is (B) angular mom	
linear momentun	n	(D) potential ener	зу
he work done by a	any friction force	is:	
always positive			
always negative			
always zero			
either positive or	negative dependi	ing upon the situation.	
person moves 3m om the initial posi	n towards East an ition to final posi	d then 4m towards North. The tion is	he resultant displace
7m		(B) 5m	
4m		(D) 1m	
ven by the relation	$x = (4t + 6t^2 + 3), v$	hool on his bicycle .The dista where distance x is in metres	ance traveled by him and time t is in seco
e acceleration of h	his bicycle after 3	30 seconds is	
360m/s^2		(B) 120m/s^2 (D) 12 m/s^2	
36 m/s^2		(D) 12 m/s	
wo physical quant	tities having the s	same dimensions are	
force and energy		(B) work and torq	
pressure and powe	er	(D) impulse and n	nomentum
The viscous force a lirectly proportion.		id ball moving in air with ter	
A) √v	(B) v	(C) 1/√v	(D) v ²
lativistic kinetic e	n_o moves with sp nergy of the part	beed 0.8c, where c is the spee icle is nearly	ed of light in vacuum
(A) $1.66m_0c^2$		$(B) m_0 c^2$	
(C) $0.32 \text{ m}_{o}\text{c}^2$		(D) $0.66 \text{ m}_{o}\text{c}^2$	
a uniform circula		•	
A) velocity and acc			
B) acceleration and	d speed are constant	ant but velocity changes	
C) acceleration and			
D) acceleration and			
			1 4 - 1
here the radius of	curvature of the	bity of 72km/hr on a flat road rod is 20m(g=10m/s ²).In ord rtical by an angle θ greater th	ler to avoid sliding, l
iust not bend with		(B) $\tan^{-1} 4$	
A) $\tan^{-1} 2$. ,	
		(D) $\tan^{-1} 25.92$	
A) $\tan^{-1} 2$			92

L

•

Q.21. A particle of mass 0.5 k 2.0m/s. Its acceleration a	kg is moving in a circ at any moment is	le of radius 0.1m	with a constant speed of
(A) zero	(B) 10	Dm/s ²	
(C) 25 m/s^2	(D) 40	$\mathrm{Dm/s}^2$	
Q.22. If the kinetic energy of a will be (A) three times the initia			
(A) three times the initia(C) two times the initial	· · · · ·	ur times the initia ichanged	l value
Q.23. A ship of mass 3×10^7 kg of force 5×10^4 N. The v (A) 0.1m/s	g initially at rest, can water resistance is ne (B) 0.5m/s	be pulled through gligible. The spe (C) 1.0m/s	a distance of 3m by means ed attained by the ship is (D)5.0m/s
Q.24.If the radius of the earth acceleration due to gravit (A) increase and decrease (C) increase at both place	ty at the pole and at the respectively	ne equator will (B) decreas	same, the value of e and increase respectively at both places
0.25 Lorontz transformert		(*)	a oon places
Q.25.Lorentz transformation ed	quations hold for		
(A) non-relativistic veloc	ities only		
(B) relativistic velocities			
(C) all velocities: relativis(D) photons only	stic & non-relativistic		
Q.26. A particle is dropped from first two seconds and in t	n a point above the e he next two seconds	arth. The ratio of	the distance travelled in the
(A) 1:1	(B) 1:2	(C) 1:3	(D) 1:4
by the spring on the mass	s is	mass less spring ate of the spring, (C) 2/Mg	, whose upper end is fixed, the restoring force exerted (D) Zero
0.28 Under the influence of a t	FOR GLORIDO TO TO TO TO TO		
Q.28. Under the influence of a t constant speed v. The tim	tansverse magnetic magnetic magnetic	ield, an electron r	noves in a circle with
(A) proportional to v (C) proportional to \sqrt{v}		(B) propo	rtional to v^2 endent of v
Q.29. The maximum velocity of 7 mm, is 4.4 m/s. The per	a particle, executing iod of oscillation is	simple harmonic	motion with an amplitude
(A) 100.00 s (C) 0.10 s		(B) 10.00 :	8
(C) 0.10 S		(D) 0.01 s	
•			

•

•

Series-A

Q.30. The equation, $x = a \cos (wt + b)$	- f) represents		
(A) accelerator due to gravit	У	(B) uniform stra	ight line motion
(C) dc current		(D)simple harmo	onic motion
Q.31. Relative to its period on the e	earth, the period of	a pendulum on the mo	on is
(A) shorter		(B) longer	
(C) the same as on the earth	l	(D) varies with t	ime
Q.32. The phenomenon that cannot	take place in sour	nd waves is	
(A) reflection		(B) interference	
(C) diffraction		(D) polarization	
Q.33.A semiconductor is cooled from	om 339K to 302K.	Its resistance will	
(A) decrease			
(B) increase			
(C) remain unchanged			
(D) first increase then decrea	ises .		
Q.34.The speed of sound in air is v length L closed at one end is (A) v/4L		frequency of the air col (C) 3v/4L	umn in a pipe of
	· /		
Q.35.A particle executes S.H.M of	-		potential energy
when the displacement of the $(A) = 0.512c$		B) 0.709a	•
(A) 0.512a (C) 0.827a		D) 0.983a	
(C) 0.627a	(D) 0.7654	
Q.36.Ultrasonic waves are used in			
(A) have low frequency		B) have short wavelen	-
(C) are electromagnetic wa	ves (D) can be easily produ	iced
Q.37. The equation of a S.H.M is y		nere the distances and t	ime are in centimeter
and second respectively. The	e speed of the wave	e is	
(A) 2.0cm/sec	(B) 20cm/sec	
(C) 30cm/sec	(D) 40cm/sec	
Q.38. The velocity of sound in air i	s 330m/s. The velo	ocity of an observer wh	no observes drop of
10% in the sound from a stat	tionary source is		
(A) 30 m/s	-	B) 33m/s	
(C) 297m/s	`	D) 330m/sec	
	(

-

Series-A

4

-

(A) the motion(B) the motion(C) the motion	ement y of a particle as a f d i= $\sqrt{-1}$. From amongst the ion is not simple harmonic ion is simple harmonic mo ion is simple harmonic mo ion is simple harmonic mo	The following, the correct motion only if α is position only if α is position only if α is position only if	tive
Q.40. Spherical ab (A) using n (B) using a (C) using a	erration in a thin lens can b nonochromatic light doublet combination circular annular mask over ing the size of the lens	be reduced by	-
statement is (A) The velo (B) The wave (C) The wave	of a wave propagating in a t of the particle in the medi city of the wave is α . e is advancing in the negati elength is $k/2\pi$.	um at a distance x at	any instant t. The correct
Q.42. The speed of a two points is 60 (A) 0.72 m	a wave is 360 m/s and the f ⁰ . The path difference bety (B) 1.20m	(C) 12.00 m	The phase difference between (D) 120.00 m
Q.43. The ratio of in of maximum t (A) 1 : 4	tensities of two waves is 1 o minimum intensities will (B) 4 : 1	.: 9. If these waves p be (C) 1 : 3	roduce interference, the ratio (D) 3 : 1
Q.44. A thin transpar between their j incident light v (A) 1 : 4		of intensities of emerg	
Q.45. The velocity of	(B) 1 : 3 light emitted from a source moves with a velocity v to	(C) 3 : 4 e S as measured by a wards S, then velocity	(D) 3 : 8 stationary observer O is c. y of light as seen by him
(A) c+v	(B) c-v	(C) c	(D) $\sqrt{1 - v^2/c^2}$
Q.46. The concept tha given by (A) Snell's Law (C) Young's Law		t may be considered (B) Huygen's Prin (D) Hertz's Law	as a new wave source is
-KL14/Phy	Series-A		<i>,</i>

Q.47. A light ray of v index 1.5. The	vavelength 5895A ⁰ tra wavelength of the ray	velling in vacuum ente	ers a medium of refractive
(A) 3930 A^0	wavelength of the ray	in the medium is	
(C) 5495 A^0		(B) 4200 A^0	
() =		(D) 7893 A ⁰	
(A) between th (B) at a distanc (C) at a distance	s placed at the focus A at a point e point A and the len ce between f and 2f fr ce more than 2f from	s om the lens	lens of focal length f. Its imag
(D) infinity			
Q.49. The resolving p	ower of a plane transm	nission grating (having	15000 rulings on the grating
surface) in the sec	cond order is		
(A) 15,000		(B) 30,000	
(C) 45.000		(D) 60,000	
Q.50. The speed of light	it in a medium of rofr		
(A) $4.5 \times 10^8 \text{m/s}$	in in a meanin of ten		
(C) $2.0 \times 10^8 \text{m/s}$		(B) $3.0 \times 10^8 \text{m/}$	-
		(D) $1.0 \text{ x} 10^8 \text{m/}$	
Q.51. In Young's doub	le slit experiment, the	separation between the	e slit is halved and the
distance between	the slit and the scree	n is doubled. The fring	e width will
(A) remain unch	anged	(B) be halved	
(C) be doubled		(D) increase for	ur times
0.52 Compton	1 1		
is	rks between temperati	ares 727°C and 27° C.	The efficiency of the engine
(A) 70%	(B) 30%	(C) 10%	(D) 01%
Q.53.Which of the follo	wing terms refer to th		
a unit mass of a si	ubstance through one	degree?	ed to raise the temperature of
(A) Heat of fusio	n	(B) Liquification	n heat
(C) Internal heat		(D) Specific hea	at
0.54 At what point is 41			
Q.54. At what point is th (A) absolute zero	te temperature the san	ne on the Celsius and F	Fahrenheit scales?
(C) negative 40 c		(B) zero	
	-	(D) never	
Q.55. Heat from the sun	reaches the earth by		
(A) conduction		(B) convection	
(C) radiation		(D) All of the ab	
Q.56. The principle that either created or d	energy may be conver	ted from one form to a	nother but it cannot be
			alouier out it calmot be
(A) first law of th	ermodynamics.	(B) second law o	f thermodynamics.
(C) third law of th KL14/Phy	ermodynamics.	(D) principle of p	photo electricity
	Series-A		energy.

Q.57. The spectral ener	ov dictriture		
4753A ⁰ . The term	berature of the star	a star at temperature 60 for which this maximu (B) 3025K	50 K has a maximum at
() 0050K	statute of the star		m is at 9506 A^0 is
(C) 12100K		$(D) 24200\kappa$	
Q.58. The rms speed of c	XVgen molecules		
hydrogen at the sa	me temperature is	thearly	500m/s. The rms speed of
(A) $31m/sec$			
(C) 2000m/sec		(B) 125 m/sec	;
0.59 That		(D) 8000m/se	ec .
body increases by (A) 81/256	a body is increase a factor	ed from 27° C to 127° C.	The radiation emitted by the
(C) 27/64		(B) 27/127	-
		(D) 256/81	
Q.60. Copper of mass 200	om is heated s		ecific heat of the copper is
0.1cal/gm/°C . Assu	ming the observed	25° C to 75° C. The sp	ecific heat of the copper in
energy of the copper	r block is	n volume to be negligib	ecific heat of the copper is le, the change in internal
(A) 100 joule			
(C) 1000 joule		(B) 420 joule (D) 4200 joule	
Q.61. Two electric bulbs ha source, the energy co	ive resistances in the is		joined in parallel to a d.c.
(A) 1:2	(B) 2:1	(C) 4:1	
Q.62. The path of a free elec	tron in a metal is		(D) 1:1
(A) parabolic			
(C) a straight line		(B) circular (D) zig-zag	
Q.63.When an electric fuse is	rated 8 A, it mean	ns	
(A) it will not work if cu (B) it has a registry	irrent is less than 8	3 A	
(B) it has a resistance of (C) it will work	[8 Ω		
(C) it will work only if c	urrent is 8 A		
(D) it will melt if current	exceeds 8 A		
Q.64. Energy consumed, in jou (A) 10	iles, by a 100-wat	t list of the	
(A) 10	, -, - 100-wan	(B) 1000	10 minutes is
(C) 36,000		(B) 1000 (D) 60,000	
KE14/Phy			
	Series-A		

Series-A

7

.

Q.65. The relative orien electromagnetic	itation of the magnetic	and about the first	
electromagnetic v	Vave is	and electric fields a	ssociated with an
(A) 180 degree			
(C) 45 degree		(B) 90 degree	
		(D) 22.5 degre	
Q.66. The magnetic line (A) in the direction (B) in a direction	s of force produced by on of the current	a linear current carr	rying conductor are
(C) perpendicular	opposite to that of cu r to the current rcles around the wire	rrent	
Q.67. 30 coulomb of chai (A) 0.8×10^{-19} A	rge flowing through a	Wina nan	
(1) 0.0XI0 A	eg intough u	(B) 0.5A	
(C) 1.0 A		(D) 30 A	
Q.68.An electron is broug	ght towards another el	ectron. The electric r	potential energy of the system
		(B) increases	intergy of the system
(C) does not change		(D) becomes ze	TO
insertion of the she	ween the plates of a inserted between the return the return the return that before inserted to that before insert	parallel plate capa	citor is d. A metal sheet of of the capacitance after the
(A) $\sqrt{2}$: 1		(B) 2 : 1	
(C) 1 : 1		(D) $1:2$	
		(D) 1.2	
Q.70. The resistivity of a w	ire varies with its		
(A) length		(B) cross-section	
(C) mass		(D) material	
Q.71. A wire has a resistant	a_{1}		
Q.71. A wire has a resistant material, but having dou	the diameter will be	e of another wire of t	he same length and
(A) 1 Ω	(B) 4 Ω	(C) 8 Ω	
O(72) K (11) (27) $=$			(D) 16 Ω
Q.72. Kirchhoff's first law (A) energy	for analyzing electrica	al circuits is based or	the conservation of
		(B) mass	
(C) momentum		(D) charge	
0.73. The number of turns is		-	
Q.73. The number of turns in (A) four times	n a coll is doubled. Its	self-inductance beco	omes
(C) halved		(B) doubled	
(C) halved		(D) squared	
Q.74. In an a.c. circuit, powe	T is consumed in		
(A) inductance only	i i onounica m	(D)	
(C) resistance only		(B) capacitance on	ly
		(D) all the three	
KL14 Phy			
	Series-A		0

Q.75.A charge Q is placed a surfaces of the cube is	at the centre of a cub	be. The flux of the electr	ric field through the six
(A) Q/ϵ_0	(B) $Q/2\epsilon_0$	(C) $Q/6\epsilon_0$	(D) Q/24ε ₀
Q.76. The permanent magnet (A) paramagnetic (C) ferromagnetic	etic moment of the a	toms of a material is ze (B) diamagnetic (D) ferrimagnetic	ro. The material is
Q.77. An a.c. source supplie one cycle and rms val (A)0 and $30/\sqrt{2}$ volt (C) 0 and $30\sqrt{2}$ volt	s an emf given by ξ ue of the voltage ar	= (30V) sin (100s ⁻¹)t. T e respectively (B) 15 volt and 30/ (D) 15 volt and 30y	$\sqrt{2}$ volt
Q.78. In a series L-C-R circu (A) 1.0	it connected to an a (B) 0.5	a.c supply, the power fac (C) 0.1	ctor at resonance is (D) zero
Q.79. The energy required to Henry is	set up a dc current	of 0.4 ampere in a coil	
(A) 16 x 10 ⁻³ joules (C) 4 x 10 ⁻³ joules		(B) 8 x 10 ⁻³ j (D) 1 x 10 ⁻³ j	
Q.80. A conducting hollow s electric potential at a po (A) (Q/4πε ₀)(2/R) volt (C) infinity	phere of radius R m bint a distance R/2 f	eters is given a charge c rom the centre of the sp (B) (Q/4πε ₀)(1/R) v (D) zero	here is
Q.81. The plates of a parallel medium between the 2A and plate separation ratio of the capacitance (A) 1:4	plates is air. Anothe 1 d/2 has a medium	er parallel plate condens	istance d apart. The er C ₂ with area of plate between the plates. The (D) 4:1
Q.82. If the dielectric constan (A) 40.5×10^{-12} mks (C) 10.5×10^{-12} mks	t of a material is 3,	its permittivity is nearly (B) 26.5x10 ⁻¹² mks (D) 1.5x10 ⁻¹² mks	,
Q.83. The S.I unit of electric t (A) volt/meter (C) volt. meter	flux is	(B) meter/volt(D) volt.m²	
Q.84. The energy of an X-ray	photon is 2 keV. Its	frequency, in units of h	nertz, is nearly:
(A) 3.2×10^{-17} (C) 5×10^{17}		(B) $2x10^{17}$ (D) 2×10^{18}	

Series-A

Q.85. The ratio of mass of (A) 200 (C) 20,000	a proton and that of an	electron is approximat (B) 2000 (D) 2,00,000	ely
Q.86. Interference phenom (A) particle nature (C) transverse natu	of light	ates (B) wave nature of l (D) dual nature of li	
Q.87.How many quarks ma _ (A) 1	ake up a neutron? (B) 2	(C) 3	(D) 4
Q.88. For the hydrogen ato (A) Lyman series (C) Balmer series	m, the series which de:	scribes electron transitio (B) Paschen series (D) Pfund series	ons to the $N = 2$ state is
Q.89. The photoelectric eff	ect is a demonstration	of:	
(A) the wave nature		(B) the particle natur	e of light
(C) inelastic collisio	on of electrons	(D) the continuous sp	pectrum of radiation
Q.90. Two charges Q and 9 the distance of the po field is zero is (A) 5cm	Q are placed at a distant pint on the line joining (B) 10cm	nce of 40cm from each the two charges at whic (C) 20 cm	other. From charge Q, ch the value of electric (D) 30cm
			•
Q.91. Among the below giv (A) 1×10^2	(B) 1x10 ¹	, the hardest x-rays cor (C) 1	respond to (D) 1x10 ⁻¹
Q.92. What does the letter " (A) scientific (C) stimulated	s" stand for in the acro	nym laser? (B) sinusoidal (D) solar	
Q.93. The radioactivity of a The half-life period o	material drops to 1/16 f the material is	th of its initial value in a	a period of 16 years.
(A) 2 years		(B) 4 years	
(C) 8 years		d) 16 years	
Q.94. The energy of hydrogenergy will be	gen atom in the ground	state is -13.6eV. In the	energy level $n = 5$, its
(A) -0.54 Ev (C) -2.72Ev		(B) -0.85Ev (D) -5.4eV	
	ed by a nucleus of radi l atom are respectively	7	number and the mass
(A) 84 and 224(C) 84 and 226		(B) 86 and 224 (D) 86 and 222	

Series-A

Q.96. During a negative beta decay

(A) an atomic electron is ejected

- (B) an electron which was already present within the nucleus is ejected
- (C) a neutron in the nucleus decays emitting an electron
- (D) a part of binding energy of the nucleus is converted into an electron
- Q.97. The minimum wavelength of X-rays produced by electrons accelerated by a potential difference of V volt is (A) eV/hc

(C) hc/Ev	(B) eh/cV
(C) HC/EV	- (D) h/V

Q.98. In a p-n-p transistor, the relation between emitter-current i_e , base-current i_b and collectorcurrent i_c is · • · ·

(A) $i_c = i_E - i_b$	(B) $i_b = i_E - i_c$
(C) $i_E = i_C - i_h$	
- c b	(D) None of these

Q.99. A p-n junction diode can be used as

(A) modulator	(B) amplifier
(C) oscillator	•
	(D) rectifier

Q.100. The NAND gate is an AND gate followed by

(A) NOT gate (C) AND gate

(B) OR gate (D) NAND gate

Series-A