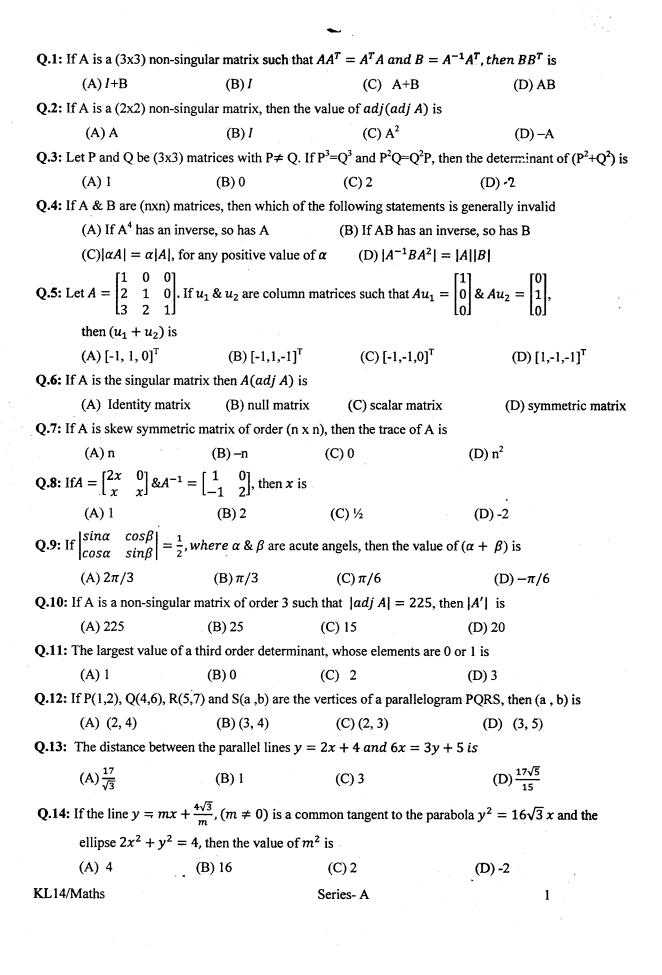
MATHEMATICS

CODE :- 12

Time Allowed: Two Hours		Marks: 100
Name:	Roll No	· .

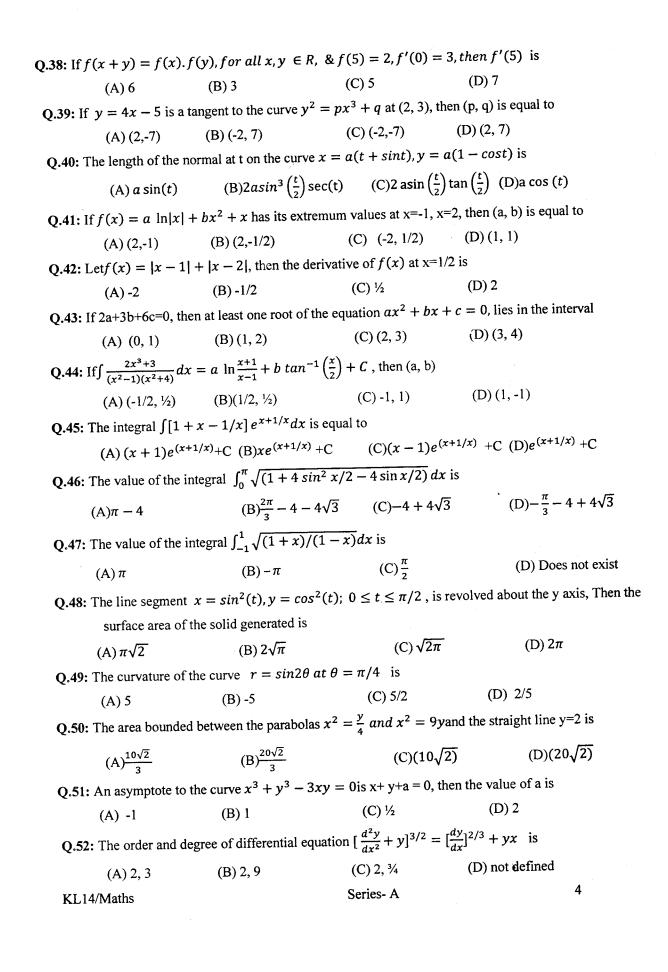

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/Maths

Series-A



.to

Q.15: An equation of	a plane parallel to	the plane $x - 2y + 2z$	= 5 and at a unit distance n	om origin is	
(A) x - 2y +	2z=3	(B)x-2y+2x	(B)x - 2y + 2z = -1		
(C) x - 2y +	2z = 1	(D)x - 2y + 2x	(D)x - 2y + 2z = -5		
Q.16: The length of th	ne diameter of the c	ircle which touches the	x axis at the point (1,0) and	passes	
through the poi	nt (2,3) is				
(A) 10/3	(B) 3/5	(C) 6/5	(D) 5/3		
Q.17: An ellipse is dra	wn by taking a diar	meter of the circle($x - 1$)	$(1)^2 + y^2 = 1$, as its semi m	inor axis	
and a diameter of	of the circle $x^2 + ($	$(y-2)^2 = 4$, as semi ma	ajor axis. If the centre of the	ellipse is	
the origin and its	axis are the coordin	nate axis, then the equat	ion of the ellipse is		
$(A)4x^2 + y^2 =$	= 4	$(B)x^2 + 4y^2 =$	8		
$(C)4x^2 + y^2 =$	8	$(D)x^2 + 4y^2 =$: 16		
Q.18: The equation o	of the tangent to the	curve $y = x + \frac{4}{x^2}$, that is	s parallel to x axis is		
(A) $y=1$	(B) $y=2$	(C) y=3	(D) $y=0$		
Q.19: If two tangents	are drawnfrom a p	oint P to the parabola y	=4x are at right angles, then	n the locus	
of P is					
(A) $2x+1=0$	(B) $x=-1$	(C) $2x-1=0$	(D) $x=1$		
Q.20: If the vectors \bar{a}	$\bar{i} = i - j + 2k, \bar{b} =$	$2i + 4j + k, \bar{c} = \lambda i + j$	$i + \mu k$ are mutually orthogon	onal,	
then (λ, μ) is					
(A)(2,-3)	(B) (-2,3)	(C) (3,-2)	(D) (-3,2)		
Q.21:The line L is gi	$ven by \frac{x}{5} + \frac{y}{b} = 1$, passes through the poi	nt (13,32).The K is parallel	to L and	
has the equation	$ \sin\frac{x}{c} + \frac{y}{3} = 1, \text{ the} $	en the distance between	L and K is		
$(A)\sqrt{17}$	(B) $\sqrt{17}/12$	(C)23/ $\sqrt{17}$	(D) $\sqrt{17}/\sqrt{15}$		
Q.22: The circle x^2 +	$y^2 = 4x + 8y + 5$, intersect the line $3x -$	4y = m at two distinct points	nts if	
(A) -35 < m	a < 15 (B)	15 < m < 65 (C)	35 < m < 85 (D) -8	5 < m < -35	
2.23: Let \hat{a} and \hat{b} are	two unit vectors. If	$\hat{c} = \hat{a} + 2\hat{b}$	and $\hat{d} = 5\hat{a} - 4\hat{b}$ are perpend	dicular to	
each other, then	the angles between	\hat{a} and \hat{b} is			
$(A)\pi/6$	$(B)\pi/2$	(C) $\pi/3$	(D) $\pi/4$		
Q.24: Let the line $\frac{x-2}{3}$	$\frac{2}{z} = \frac{y-1}{-5} = \frac{z+2}{2}$	lies in the plane $x + 3y$	$-\alpha z + \beta = 0, then (\alpha, \beta)$	is	
(A) (6,-17)	(B) (-6,7)	(C) (5,-15)	(D) (5,-15)		

Series- A

Q.25: If \bar{a} , \bar{b} , \bar{c} are three	e mutually perpendi	cular vectors each of mag	nitude unity, then $ \bar{a} + \bar{b} + \bar{c} $ is
equal to			
(A) 3	(B) 1	(C)√3	(D) 2
Q.26: If θ is the angle	between \bar{a} and \bar{b} s	uch that $\bar{a} \cdot \bar{b} > 0$, then `	
$(A)0 \le \theta \le \pi$	$(B)\pi/2 \le \theta \le \pi$	$(C)0 \le \theta \le \pi/2$	$(D)0 \le \theta \le 2\pi$
Q.27: The point of inte	ersection of the curv	es $r^2 = 4 \cos\theta$ and $r =$	$= 1 - \cos\theta$ is
(A) $(2\sqrt{2}-2,$	80°) (B) (2, 6	(C)(3,70)	(D) $(-2\sqrt{2}, 80^{\circ})$
Q.28: If $f: R \to R$ is given by	iven by f(x) = 3x - 3x	- 5, then $f^{-1}(x)$ is	
$(A)\frac{1}{3x-5}$		$(B)\frac{x+}{3}$	<u>5</u>
(A) = -5		(B) 3	
(C) Does not ex	xist because $f(x)$ is	not one-one (D) Do	es not exist because $f(x)$ is not on to
Q.29: If $f(x) = \sin^2 x$	$x + \sin^2\left(x + \frac{\pi}{3}\right) +$	$cosx.cos\left(x+\frac{\pi}{3}\right)$ and g	$\left(\frac{5}{4}\right) = 1$, then $gof(x)$ is
(A) 1	(B) 0	(C) $\sin x$	(D) $\cos x$
Q.30: If the non-zero	numbers x, y, z are	in A.P. and $tan^{-1}(x)$, tan	$n^{-1}(y)$, $tan^{-1}(z)$ are also in A.P., then
(A)x = y =	$= z \qquad (B)xy = yz$	$(C)x^2 = yz$	$(D)z^2 = xy$
Q.31: If $a^x = b^y = c^x$	z and a, b, c are in C	G.P., then x, y, z are in	
(A) AP	(B) GP	(C) HP	(D) $x=y=z$
Q.32: The HM of two	numbers is 4. If the	arithmetic mean A and ge	ometric mean G satisfy the
relation 2A+G ² =	27, then the number		
(A) 6, 3	(B) $5, 4$	(C) 5,-5/2	(D) -3,1
Q.33: If $\lim_{n\to\infty} \left(\frac{x^2}{x+1}\right)$	$\left(\frac{1}{a} - ax - b\right) = 0$, the	en the value of (a, b) is eq	ual to
(A)(1,-1)	(B) (2,-1)	(C) (-1,2)	(D)(2,2)
Q.34: The value of li	$m_{x\to 0} \{ \tan\left(\frac{\pi}{4} + x\right) \}$	^{1/x} is	
(A) 1	(B) -1	$(C)e^2$	(D) <i>e</i>
Q.35: If $f(x) = a sin$	$ nx + be^{ x } + c x ^3$	and if $f(x)$ is differential	ole at x=0, then
(A) $a = b =$	c = 0 (B) $a=b=0$,	$c \in R$ (C) $b=c=$	0, $a \in R$ (D) $a=c=0, b \in R$
Q.36: Let $f(x) = \begin{cases} \frac{1}{ x } \\ ax \end{cases}$	$ x \ge 1$ $ x \ge 1$; if	f(x) is continuous and di	fferentiable at any point, then
(A) $a=1/2,1$	o=-3/2 (B) $a=-1/2$	b=3/2 (C) $a=1,b=-1$	(D) $a=-1$, $b=1$
Q.37: Let $f(x)$ be a tw	vice differentiable fu	nction such that $f''(x) =$	-f(x) and $f'(x) = g(x)$,
$h(x) = \{f(x)\}$	$\{g(x)\}^2$ + $\{g(x)\}^2$, If h ((5) = 11, then h (10) is equ	ual to
(A) 22	(B) 11	(C) 0	(D) -22
	,		
KL14/Maths		Series- A	3

(A) $3/2 + \frac{3}{x^2}$	(B) $-3/2 + \frac{c}{x^2}$	(C)	cx^2-1/x	$(D) cx^2 + 1/x$
Q.54: The particular inte	gral of y'' + y = 1	tan(x) is		
$(A)-\cos(x)\ln(s$	ecx + tanx)	(B)	cos (x) ln(secx	t + tanx
$(C)-\sin(x)\ln(sa)$	ecx + tanx)	(D)	sin (x) ln(secx	+ tanx)
Q.55: The singular soluti	on of the different	tial equation $y =$	$xy' + y'^2$ is	
$(A)x^2 + 4y = 0$	$(B)x^2-4y=$	= 0 (C)-	$-x^2 - 4y = 0$	$(D)-x^2+4xy=0$
Q.56: The curve in whi	ch the slope of the	tangent at any p	oint equal to th	e ratio of abscissa to the
ordinate of the poi	nt is an			
(A) Ellipse	(B) Parabola	(C) Rectan	gular hyperbola	(D) Circle
Q.57: If $f'(x) = f(x)$ &		3) is equal to		
$(A) e^2$	` '	(C)3		(D) $3e^3$
Q. 58: The value of i^{14} +	$i^{20} + i^{333} + i^{403}$	$S(where i = \sqrt{s})$	-1) is	
(A) 1	(B)-1	(C) 0	(D) 2	
Q. 59: The number of real	solutions of the ed	quation $ x ^2 + 2$	x + 2 = 0 are	e
(A) 4	(B) 3	(C) 2	(D) 0	
Q. 60: If the ratio of the ro	ots of the equation	$ax^2 + bx + c$	$= 0$ is r then $\frac{(r)}{r}$	$\frac{(r+1)^2}{r}$ is equal to
$(A)^{a^2}_{bc}$	$(B)\frac{b^2}{ca}$	$(C)\frac{c^2}{at}$: - (I	$O)\frac{1}{abc}$
Q. 61: If Z is a complex nu		-	•	
	(B) 8, 0	(C) 6, 0	(D) 9,	
Q. 62: The smallest positiv	e integral value of	<i>n</i> for which $\left(\frac{1+}{1-}\right)$	$\left(\frac{i}{i}\right)^n = 1$ is	
(A)8	(B) 12	(C) 16	(D) 4	
Q.63: If 1, ω , ω^2 ,	ω^{n-1} a	are the n, n th root	s of unity, then	the value of
	$\dots \dots (1-\omega^{n-1})$			
(A) 0	(B) 1	(C)n	$(D)n^2$	
Q. 64: The complex number	rs $Sin x + j Cos2x$	and Cos x - ; Si	n2x are conjuga	te to each other for
(A) $x = (n+1/2)$	(B) x = c	$\pi/2$ (C)	$\zeta = 0$	(D) no value of x
Q. 65: Let $f(x) = \sqrt{2}x^2$	$+3x-\sqrt{3}$ and $g($	$(x) = x - \sqrt{2} \text{ ar}$	e two polynomia	als in x with real
coefficients, when	f(x) is divided by g	g(x) the remainder	er is $5\sqrt{2} - \sqrt{3}$.	The quotient is given by
$(A)\sqrt{2}x-5$	(B) v	$\sqrt{2}x + 5$	$(C)\sqrt{2}x-3$	(D) $\sqrt{2}x + 3$
Q. 66: Let $(a^*(B)^2 = a^2 * b^2)$ for	or 'a' and 'b' are i	n a group G, the	n a*b equals	
(A) b*a	(B) e	(C) a	:*e	(D) b*c
KL14/Maths		Series- A		5
		Series- A		J

Q.53: The general solution of the first order equation $x^2y' - 2xy = 3$ is

Q. 67: The sum of 23 and 3	I modulo 45 is			
(A) 5	(B) 6	(C) 7	(D) 9	
Q. 68: If 'a' is a generator	of a finite cyclic gro	up G of order n, then the	other generators o	f G are the
elements of the form	a ^r , where r is a			
(A) Prime nur	mber (B) Compo	osite number (C) Relati	ively prime to n	(D) Zero
Q. 69: What is the order of	the cyclic (1, 4, 5, 7)		
(A) 4	(B) 1	(C) 3	(D) 2	
Q. 70: How many differen	t signals can be give	n with 5 different flags by	y hosting any num	ber of them at
a time				
(A) 325	(B) 626	(C) 253	(D) 352	
Q. 71: What is the chance	of getting multiple o	f 2 on one and multiple of	f 3 on the other in	a single throw
of dice				
(A) 1/3	(B) 7/36	(C) 11/36	(D) 13/36	
Q. 72: A person draws two	cards with replacen	nent from a pack of 52 ca	rds. What is the pr	obability that
he gets both the card	is of same suit.			
(A) 1/4	(B) 3/13	(C) 1/16	(D) 5/16	
Q. 73: The value of $P(x=2)$	in a binomial distrib	oution when p= 1/6 and n	= 5 is	
7776	(B) $\frac{250}{7776}$	$(C)\frac{125}{777}$		$D)\frac{25}{7776}$
Q.74: A purse contains 4	copper coins and 3 s	silver coins; the second pu	irse contains 6 cop	per coins
and 2 silver coins. A	coin is taken out of a	any purse, the probability	that it is a copper	coin is
(A) 4/7	(B) 3/4	(C) 3/7	(D) 37/56	
Q.75: If the probability of	f a defective bolt is $\frac{3}{1}$	$\frac{1}{0}$, then the moment of 0	coefficient of ske	wness is
(A) 0.0178	(B) 0.178	(C) 1.78	(D) 0.00178	
Q.76: A car hire firm has				
Day is distributed	as a poisson distribu	ation with mean 1.5. The	value of the propor	rtion of days on
which neither car is	s used.			
(A) 0.2231	(B) 0.2131	(C) 0.2321	(D) 0.223	
Q.77: Area of the normal	curve between mean	n ordinate and ordinates a	t 3 sigma distance	s from the
mean percentage of	f the total area is			
(A) 48.865	(B) 49.865	(C) 47.865	(D) 46.865	
Q.78: The numbers 3.2, 5	5.8, 7.9, and 4.5 have	the frequencies x , $(x+2)$	(x-3) and $(x+6)$ re	espectively. If
the arithmetic mean	is 4.876, then the vo	olume of x is		
(A) 4	(B) 3	(C) 0	(D) 5	
KL14/Maths		Series- A		6

Q.79: If the mean and r	nedian of moderately as	symmetrical series are	- 26 & and 27 0 .	rogmosticular bar
would be its most	probable mode	,	20.0 and 27.9	respectively what
(A) 31.1	(B) 30.1	(C) 32.1	(D) 33.1	
Q.80: If mean 30, S.D = $(1.5)^{-2}$	8, Karl Pearson's coeff	icient of skewness =	+ 0.40 the value	of Mode :-
(A) 26.8	(B) 24.8	(C) 22.8	(D) 28.8	
Q.81: In a frequency dis	stribution the coefficient		on quartiles is 0	6 1641
the upper and lower	quartiles is 100 and me	dian is 38, then the v	alue of upper a	.o. II the sum of
(A) 50	(B) 70	(C) 60	(D) 80	iartile is
Q.82: Given $\mu_1 = 0, \mu_2 = 0$	$=40, \mu_3=-100, \mu_4=$	= 200 , then the value	of the skewnes	a in the diet in the
is		, and the value	of the skewnes	s in the distribution
(A) 3/64	(B) 1/64	(C) 5/64	(D) 7/64	
Q.83: If the value of coeff	icient of correlation bet	ween two series is +	0.9 and its prob	ahla arroro io
0.0128, what would b	e the value of n		ois and its prope	able ellois is
(A) 100	(B) 10	(C) 105	(D) 95	
Q.84: The coefficient of co	orrelation between the d	ebenture prices and s	share prices of a	COmpany was
+ 0.8. If the sum of the	squares of the difference	ces in ranks was 33, t	hen the value of	in is
(A) 10	(B) 11	(C) 9	(D) 8	11 15
Q.85: Given that the regres	sion equations of 'Y' or	'X' and 'X' on 'Y'	are respectively	V=X and
4X = 3+Y, and that th	e second moment of x a	bout the origin is 2. 7	Then the S D of	V ic
(A) 0	(B) 1	(C) 2	(D) -2	
Q.86: The angle between tw	o forces each equal to ')	P' when their resultar	it is also equal to	n P is
(A) 60°	(B) 180°	$(C) 120^{0}$	(D) (900
Q.87: The components of a fo	orce of magnitude 10 N	in the direction maki	ng angles of 30 ⁰	and 60 ⁰
on its sides are			BB100 01 30	and oo
$(A) 5\sqrt{3} N,$	(B) 5 N,	(C) $5\sqrt{2} N$,	5 <i>N</i> (T	D) 5√5 <i>N</i> ,5 <i>N</i>
Q.88: Three coplanar forces	acting on a particle are i	n equilibrium. The ar	ngle hetween the	of first and the
second is 60° and that	between the second and	the third is 150° the	n the ratio of the	e mist and the
forces is		,	is and factor of the	magnitudes of
(A) 1: 2: $\sqrt{3}$	(B)1: $3:\sqrt{3}$	(C) 1:1	√2	(D) 2.4 E
Q.89: The resultant of two unl		agnitude 10N and 18	V acts along o 1:	(D) 2: 1: $\sqrt{3}$
distance of 12 cm. from	the line of action of the	smaller forces then t	the distance both	ne at a
lines of actions of the tw	o forces is.	and to too, then	are distance bely	ween the
$(A) \frac{16}{3} cm$	(B) $\frac{17}{3}$ cm	$(C)^{\frac{14}{3}}$	om	$(D)\frac{13}{3}cm$
KL14/Maths		Series- A		7
				,

Q.90: The moment of a force of m	nagnitude 25N acting alon	g the positive direction of	x-axis about the	
point (-1,3) is				
(A) 75 Units	(B) 65 Units	(C) 55 Units	(D) 45 Units	
Q.91: A couple of moment -60 uni	ts act in the plane of the p	paper. The arm of the coup	ole if each force	
is of magnitude 10 units is				
(A) 6 Units	(B) 5 Units	(C) 4 Units	(D) 3 Units	
Q.92: The average speed of a bicy	cle over a journey of 50 I	Km, if it travels the first 10	0 Km. at 20 km/hr,	
second 12 km in 1 hr and thi	ird 24 km at 8 km/hr. is			
(A) 09 km/hr	(B) 10 km/hr	(C) 08 km/hr	(D) 06 km/hr	
Q.93: A particle starts with a veloc	city of 30m/s and moves i	n a straight live with cons	tant acceleration. If	
its velocity at the end of 6 se	conds be 18 m/s, then the	distance traveled by the p	particle before	
it comes to rest is				
(A) 224m	(B) 225m	(C) 220m	(D) 215m	
Q.94: A ball is projected vertically	upward with a velocity o		it rise	
(A) 640m	(B) 630m	(C) 635m	(D) 639m	
Q.95: A man walking at the rate of	of 6 km/h towards east, rai	in appears to fall vertically	downward. Actual	
direction of the rain if its act			, e.c.0	
(A) 50°	(B) 60°	(C) 45°	(D) 55°	
Q.96: The path of projectile in vac			(D) EW	
(A) Circle	(B) Straight line	(C) Parabola	(D) Ellipse	
Q.97: A particle is projected with	a velocity of 24m/s. at an	angle of elevation of 60°,	then its time of	
flight is		_		
(A) $(2.4)\sqrt{3}$ Seconds	5	(B) $(2.3)\sqrt{3}$ Second	•	
(C) $(2.2)\sqrt{3}$ Seconds		(D) $(2.1)\sqrt{3}$ Seconds		
Q.98: A particle is projected up a	smooth inclined plane of	inclination 60° along the l	ine of greatest	
slope. If it comes to instar	ntaneous nest after 2 secon	nds, then the velocity of pr	rojection is (g=9.8m/s²)	
(A) 9.8 m/se	(B) 10 m/se	(C) 16.97 m/se	(D) 19.6 m/se	
Q.99: Like parallel forces act at the	ne vertices A, B, C of a tri	angle and are proportiona	l to the lengths	
BC, CA and AB respective	ely. The centre of the force			
(A) Centroid		(B) Circum Centre		
(C) In-Centre		(D) None of these		
Q.100: A horizontal rod AB is sus	spended at its ends by two	vertical strings. The rod i	is of length 0.6	
meter and weight 3 units.	Its centre of gravity is at a	a distance 0.4 meter from	force A, then the	
tension of the string at A	in the same unit, is			
(A) 0.2	(B) 1.4	(C) 0.8	(D) 1.0	
KL14/Maths	Seri	es- A		