Electrical Engineering

CODE :- 08

Time Allowed: Two Hours		Marks: 100
Name:	Roll No	

Read instructions given below before opening this booklet:

DO NOT OPEN THIS BOOKLET UNTIL YOU ARE TOLD TO DO SO

- 1. Use only **BLUE Ball Point** Pen.
- 2. In case of any defect Misprint, Missing Question/s Get the booklet changed. No complaint shall be entertained after the examination.
- 3. Before you mark the answer, read the instruction on the OMR Sheet (Answer Sheet) also before attempting the questions and fill the particulars in the ANSWER SHEET carefully and correctly.
- 4. There are FOUR options to each question. Darken only one to which you think is the right answer. There will be no Negative Marking.
- 5. Answer Sheets will be collected after the completion of examination and no candidate shall be allowed to leave the examination hall earlier.
- 6. The candidates are to ensure that the Answer Sheet is handed over to the room invigilator only.
- 7. Rough work, if any, can be done on space provided at the end of the Question Booklet itself. No extra sheet will be provided in any circumstances.
- 8. Write the BOOKLET SERIES in the space provided in the answer sheet, by darkening the corresponding circles.
- 9. Regarding incorrect questions or answers etc. Candidates kindly see NOTE at the last page of the Booklet.

KL-14/EE

(((A polynomial $f(x) = a_4x$ A) no real roots B) no negative real root C) odd number of real root D) at least one positive ar	ots nd one negative real ro	oot	
	The value of the integral		here c is the circle $ z =$	lis given by: (D) l
Ì	A) 0	10	5	,
(The steady-state error of finite in a A)-type 0 system. C) type 2 system.	a feedback control sy	ystem with an accelerate (B) type 1 system. (D) type 3 system.	ation input becomes
4.	The impulse response of transfer function is		, , , , , , , , , , , , , , , , , , ,	1 the corresponding
((A) 1/s	(B) $1/s^2$	(C) 1	(D) S
	Given a unity feedback c	control system with G	$(s) = \frac{K}{S(S+4)}$ the value	of K for a damping
	A) 1	(B) 16	(C) 32	(D) 64
6.	If the transfer function o the system is	f a first-order system	is $G(s) = \frac{10}{1+2S}$ then	the time constant of
	(A) 10	(B) 1/10	(C) 2	(D) 1/2
	A good control system hat (A) good stability (C) good accuracy	as all the following fea	tures except (B) slow response (D) sufficient power	handling capacity
	Which of the following is response?	s the best method for d	letermining the stabilit	y and transient
	(A) Root locus(C) Nyquist plot		(B) Bode plot (D) None of the abov	e
9.	Addition of zeros in trans	sfer function causes w	hich of the following?	•
	(A) Lead-compensation(C) Lead-lag compensation	on	(B) Lag-compensatio(D) None of the abov	
	. ,			
10.	The control system do settling time, improved d (A) P	esign specification for amping and zero stead (B) PI	t a chemical process is ly state error. What co. (C) ID	s described as short ntrol do we choose? (D) PID
11.	When a system's frequency (A) the Gain Margin is (C) the Phase Margin is	1 dB	s the -1 point (B) the Gain Margin (D) the Phase Margin	
12.	The Laplace transform $(A) \frac{2s}{(s+2)^2 + 2\omega^2}$	n of e ^{-2t} Sin2ωt is:	$(B)\frac{2\omega}{(s-2)^2+4\omega^2}$	
	$(C)\frac{2\omega}{(s+2)^2+4\omega^2}$		(D) $\frac{2s}{(s+2)^2-2\omega^2}$	
Z I 1	4/FF	Series-		

13.	The fourier transform of a continuo	ous time signal $X(t) = \exp(-a \mid t \mid)$, $a > 0$ is
	$(A)\frac{-a}{a^2+\omega^2}$	(B) $\frac{2a}{a^2+\omega^2}$
	$(C)\frac{1}{a^2+\omega^2}$	$(D)\frac{-1}{a^2+\omega^2}$
14.	Maxwell's equations involve(A) Charge density (C) Magnetic intensity	(B) Current density (D) All of these
15.	Electric Potential Energy V is given by $(A) \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{R^2}$	$(B)\frac{1}{4\pi\varepsilon_0}\frac{R^2}{q_1q_2}$
	$(C)\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{R}$	$(D)\frac{1}{4\pi\varepsilon_0}\frac{R}{q_1q_2}$
16.	Which of the following is a low-gain (A) Dish antenna on a space craft (C) Both (A) and (B)	in antenna? (B) Wi-Fi antenna (D) None of the above
17.	Magnetic vector potential for volum $(A) \int_{s}^{L} \frac{\mu_{0}JdV}{4\pi r}$ $(B) \int_{s}^{L} \frac{\mu_{0}JdV}{4\pi r^{2}}$ $(C) \int_{s}^{L} \frac{\mu_{0}JdV}{2\pi r}$ $(D) \int_{s}^{L} \frac{\mu_{0}JdV}{2\pi r^{2}}$	ne current is expressed as .
18.	For a good dielectric medium_	·
	$(A)\frac{\sigma}{\omega\varepsilon}=0$	(B) $\frac{\sigma}{\omega \varepsilon} < 1$
	$(C)\frac{\sigma}{\omega\varepsilon} >> 1$	$(D)\frac{\sigma}{\omega \varepsilon} = \infty$
19.	Gold and silver are (A) dielectric materials (C) magnetic materials	(B) low resistivity conducting materials(D) insulating materials
20.	Hall effect may be used for which of (A) determining whether the semical (B) determining the carrier concentration (C) calculating the mobility (D) All the above	onductor is p or n type

21.	. The property due to which the resistance of some metal or compound vanishes under certain conditions is known as				
	(A) Semi conductivity.(C) Curie point.		(B) Magnetostriction.(D) Super conductivity.		
22.	A 32 to 1 multiplexer has (A) 32 inputs, one output (B) 32 outputs, one input (C) 5 inputs, one control (D) 5 inputs 32 control si	t and 5 control sign and 5 control significant and 32 out	gnals nals puts		
23.	What J-K input condition transition? (A) J = 0, K = 0 (C) J = 1, K = 0	n will always set	'Q' upon the occurrence of (B) J = 1, K = 1 (D) J = 0, K = 1	of the active clock	
24.	How many comparators (A) 4095	would a 12-bit fla (B) 3095	<u>-</u>	(D) 2512	
25.	The number of states in if flop scan have is $(A) 2^n - 1$	ts counting seque (B) 2 ⁿ⁻¹	nce that a ring counter cor	expression of 'n' flip- $(D) 2^{n+1}$	
26.	and the actual time to another voltage.	h smaller than holdelay between the switch closes. The time it takes for		from one voltage	
27.	The fastest switching leads (A) CMOS	ogic family is (B) TTL	(C) DTL	(D) ECL	
28.	A bridge rectifier provid of each diode, respective (A) 79mA, 167V (C) 12.5mA, 167V		at 150V, the average curre (B) 25mA, 236V (D) 25mA, 120V	ent and PIV rating	
29.			of 30V, and a full load vector and load regulation resp (B) 25Ω , 20% (D) 25Ω , 16.7%		
30.	Compared to bipolar tran (A) lower input impeda (B) higher voltage gain (C) higher input imped (D) higher input imped	ince ance and high vo	Itage gain		

31.	(B) more than that	ET but more than BJT of FET and BJT of FET but less than			
32.	What will be the s with two MSBs use	ize of each memory led to enable the decod	block wher	n addressed f	8 blocks of memory. From a sixteen bit bus
	(A) 2K	(B) 4K		(C) 16K	(D) 64K
33.	The decimal value (A) 6	for the BCD coded nu (B) 10	ımber 0001	0010 is (C) 12	(D) 18
34.	In a DMA write op (A) from I/O to m (C) from memory	•	nsferred	(B) from me (D) from I/O	emory to I/O. O to I/O.
35.	(C) assembler dire	ons. at are ignored by the r		ssor.	
36.	For attenuation of I (A) Shunt Capacita (C) Inductance	high frequencies we sl nce	(B) Se	ries Capacita esistance	nce
37.	A 400 W carrier is (A) 400	amplitude modulated (B) 588	with $m = 0$).75. The tota (C) 650	l power in AM is (D) 512
38.	audio sine waves. 'output?	Which of the followin	g frequenc	y is least like	z, 800 Hz and 2 kHz ely to be present in the
	(A) 1002	(B) 1000	· (C) 99	8.2	(D) 998.8
39.	Push pull amplifier (A) Voltage ampli (C) Power amplifier	fier		arrent amplifi one of the abo	
40.		when the AF is 500 H voltage is now increas (B) 14.4kHz		V, the new de	2.4 V, the deviation is viation will be: (D) 9.6kHz
41.	(A) Remains unaff	n increase of firing ang vith increase of α			-

42.	Snubber circuit is used to	limit the rate of		
	(A) Rise of current acro	ss SCR	(B) Conduction	n period
	(C) Rise of voltage acro	oss SCR	(D) None of the	ne above
43.	While working in series of provide uniform	operation, equalisi	ng circuits are added ac	ross each SCR to
	(A) Voltage distribution		(B) Firing of SCRs	
	, , <u> </u>	L	(D) None of the above	2
	(C) Current distribution		(D) None of the above	
44.	During forward blocking	state, the SCR has	S	
	(A) Low current, mediu			-
	(B) Low current, large v	_		
	(C) Medium current, large	•		
	(D) Large current, low v	-		
	(D) Large current, low v	onage		
45.	A three-phase, fully contributed inverter to feed 50 kW por Consider dc link current (A) 119.05A (C) 39.68A	ower 420 V dc to a	three-phase, 415V(line	e), 50 Hz ac mains.
46.	When the firing angle α courrent into a load is 30° (A) 1 (B			
47.	AC-to-DC circulating α relationship between their (A) $\alpha_1+\alpha_2=180^{\circ}$ (C) $\alpha_1-\alpha_2=180^{\circ}$)°
48.	Expression of average o input dc voltage V _i and d	_	of a step up chopper	in terms of applied
	·	• •	v - v v i	/->
	$(A)\frac{V_i}{\alpha}$	$(B)\frac{V_i}{1+\alpha}$	$(C)\frac{v_i}{1-\alpha}$	(D) αV_i
49.	What is the condition to be a series inverter?	pe satisfied (for un	der damping) in the sel	ection of L and C in
	(A) $R^2 < \frac{2L}{C}$	(B) $\mathbb{R}^2 > \frac{4L}{L}$	(C) $R^2 = \frac{4L}{c}$	(D) $\mathbb{R}^2 < \frac{4L}{L}$
	(A) $R = \frac{c}{c}$	(B) $K > \frac{C}{C}$	(C) $R - \frac{c}{c}$	(D) $K < \frac{c}{c}$
50.	The consideration involv application depends on	ed in the selection	of the type of electric of	lrive for a particular
	(A) Speed control range	and its nature	(B) Starting to	rane
	(C) Environmental cond		(D) All of the	•
	(C) Environmental cond	1110113	(D) All of the	accive.
51.	When quick speed revers	al is a consideration	on, the motor preferred	is
	(A) dc motor		<u>-</u>	ge induction motor
	(C) wound rotor inductio	n motor	(D) Synchrono	=
	(=) come rotor middello		(2) 5) 110111011	

52.	Average output voltage(V _o) in terms of Controlled Bridge converter at firing angle	maximum input voltage (V_m) of a Half $\alpha = 90^\circ$ is:	
	(A) $2V_m / \pi$ (B) V_m / π	(C) $\sqrt{2}V_{\rm m}/\pi$ (D) 0	
53.	The speed of a D.C. shunt motor more than (A) decreasing the field current (C) decreasing the armature current	its full-load speed can be obtained by (B) increasing the field current (D) increasing the armature current	
54.	In squirrel cage induction motors, the rotor to reduce	slots are usually given slight skew in order	
-	(A) windage losses(C) accumulation of dirt and dust	(B) eddy currents(D) magnetic hum	
55.	A 3-phase 440 V, 50 Hz induction motor hawill be	s 4% slip. The frequency of rotor e.m.f.	
	(A) 200 Hz (B) 50 Hz	(C) 2 Hz (D) 0.2 Hz	
56.	In a three-phase induction motor, the number (A) zero (B) more than the number of poles in stator (C) less than number of poles in stator (D) equal to number of poles in stator		
57.	A single-phase induction motor is (A) inherently self-starting with high torque (B) inherently self-starting with low torque (C) inherently non-self-starting (D) none of the above		
58.	Which of the following single phase motors (A) Shaped pole motor (C) Capacitor start motor	will operate at high power factor? (B) Split phase motor (D) Capacitor run motor	
59.	The X: R ratio of 220 kV line as compared (A) greater (C) equal	to 400 kV line is (B) smaller (D) it could be anything	
60.	The corona loss on a particular system at 50 on the same system with supply frequency (A) 1 kW/phase/km (C) 0.667 kW/phase/km		
61.	The main criterion for selection of the size system is:	of distribution for a radial distribution	
	(A) voltage drop (C) temperature rise	(B) corona loss (D) capital cost	
62.	If an induction machine is run at above syn		
	(A) a synchronous motor(C) an inductor motor	(B) an indcution generator(D) None of the above	
KL14/	· •		6

KL14/EE

63.	· · · · · · · · · · · · · · · · · · ·				
(insulators is due to (A) unequal self-capacitance of the units				
	B) non-uniform distance		units from the tower b	oody	
	C) the existence of stray	-			
	the tower body				
(D) non-uniform distance	e between the cross-a	rm and the units		
64.	An alternator has a phase of rotation of alternator				
		B) RYB ·	(C) YRB	(D) BRY	
	` '	,	` '	. ,	
65.	An alternator is said to				
	(A) unity power factor		(B) leading power fac(D) none of the above		
	(C) lagging power fact	or	(D) holle of the above	,	
66.	Which of the following	contributes to the in	provement of efficien	cy of Rankine cycle	
	in a thermal power plan				
	(A) Reheating of steam(B) Regeneration use of				
	(C) Use of high pressu		oner recu water		
	(D) All of the above.				
(5	7	Annule anias in the C	allassina fault		
67.	Zero sequence currents (A) L-G (B) L-L	(C) L-L-G	(D) L-L-L-G	
	(H) L-O	B) E E	(C) L L C		
68.	Insulators in EHV lines	are designed based of			
	(A) switching voltages	S	(B) peak voltages		
	(C) corona		(D) lightning voltage	S	
69.	Which special type of r	notor has rotor move	ments in discrete steps	S	
0,,	(A) stepper motor	notor mas rotor move	(B) reluctance motor		
	(C) hysteresis motor		(D) servomotors		
= c					
70.	A 550 V, 55 kVA single current of 200A on sl				
	synchronous impedance		an cmi oi 400 v o	n open eneum. The	
	(A) 4.25Ω	(B) 3.25 Ω	(C) 2.14Ω	(D) 2.25 Ω	
	, ,	, ,			
71.	Three 6 Ω resistors are	connected to form a	triangle. What is the re	esistance between	
	any two corners?	(P) 6 O	(C) 4 Ω	(D) 8/3 Ω	
	$(A)3/2 \Omega$	(B) 6 Ω	(C) 4 32	(D) 0/3 \$2	
72.	With three resistances of	connected in parallel,	if each dissipates 20	W the total power	
	supplied by the voltage	source equals			
	(A) 10 W	(B) 20 W	(C) 40 W	(D) 60 W	

73.	"In any linear bilateral nets current I in any other brand produce the same current in (A) compensation theorem (C) reciprocity theorem	ch, then same e.m the first branch". T (H	n.f. acting in the second	d branch would ated with:-
74.	In Thevenin's theorem, to fir (A) all independent current sources are open circuite (B) all independent voltage (C) all independent voltage (D) all independent voltage sources are open circuite	sources are short c ed. and current source and current source sources are short c	es are open circuited.	
75.	In a DC circuit the Thevenin maximum amount of power (A) 30.25W			rrent is 3A. The (D) 22.5W
76.	Zero input response of a circ (A) The response when time (B) The response when initi (C) The response when appl (D) The response when trans	t=0 al conditions are z ied input is zero	ero	
77.	A series RC circuit has $R = 5$ (A) 12.5 μ sec. (C) $2x10^6$ sec.	(B	the time constant of the b) 0.5 \(\mu \) sec.	circuit is
78.	A dynamometer wattmeter ca (A) AC measurement only (C) DC measurement only	, (B	Both AC & DC measu None of the above	urement
79.	In a 3-phase power measurer identical readings. The powe (A) 0.8 lagging (C) Zero	factor of the load (B	neter method, both the vis:) 0.8 leading) Unity	watt meters had
80.	For measuring a very high re (A) Kelvin's double bridge (C) Meggar	(B	l use) Wheat stone bridge) None of the above	
81.	Various adjustments in an en (A) lag and creep (C) temperature compens	(B	e) overload and voltage of All of the above	compensation
82.	De Sauty's bridge best suited (A) capacitors with dielection (C) high Q	tric loss (B) lossless air capacitors) low Q	

83.	3. In an Anderson bridge, the unknown inductance is measured in terms of (A) known inductance and resistance (B) known capacitance and resistance (C) known resistance (D) known inductance			e and resistance	
84.	If an instrument has crampe (A) logarithmic law (C) uniform law	d scale for lar	(B) sq	s, then it follows uare law one of the above	
85.	If 25 W of power are applied of 10, the power delivered to	o the secondar	-		
	(A) 250W	(B) 2.5W		(C) 25W	(D) 0W
86.	In a certain loaded transfe voltage. The secondary curr (A) one-fourth the primary	ent is	·	voltage is one-tur times the prin	
	(C) sixteen times the prima	ry current	(D) two ti	mes the primary	current
87.	The path of magnetic flux in	n a transforme	r should h	ave	
	(A) high reluctance		(B) hig	gh resistance	
	(C) low resistance		(D) lov	w reluctance	
88.	No-load current in a transfo (A) lags behind the applied (B) leads the applied volta (C) lags behind the applied (D) leads the applied volta	l voltage by al ge by about 7: voltage by ab	5° out 15°		
89.	A buchholz relay can be ins	talled on			
	(A) Auto transformer			cooled transfor	
	(C) welding transformers		(D) oil	cooled transfor	mer
90.	A transformer can have zero	voltage regul	lation at		
	(A) leading power factor		(B) un	ity power factor	
	(C) lagging power factor		(D) zei	ro power factor	
91.	In a Delta -Delta connected capacity will reduce to:	transformer, i	f one of th	ne transformer w	vinding is open, the
	(A) 66.67%	(B) 57.74%		(C) 50%	(D) 33.33%
92. 3	Scott connections are used for (A) Single phase to three ph (B) Three phase to single ph (C) Three phase to two phas (D) None of the above	ase transforma	ation		
93.	The excessive temperature rise	in the Transf	ormer cau	ıses maximum d	amage to:
	(A) Winding insulation(C) Copper wining		(B) Co	re laminations electric strength	

94. The rower- factor at r	esonance in R-L-C c	ircuit is	
(A) zero		(B) unity	
(C) 0.5 lagging		(D) 0.5 leading	
95. Which of the following secondary circuits:	ng will improve the n	nutual coupling between p	orimary and
(A) Transformer oil	l of high breakdown	voltage	
(B) High reluctance	e magnetic core		
(C) Winding materi	al of high resistivity		
(D) Low reluctance	magnetic core		
96.A control system with	excessive noise, is li	kely to suffer from	
(A) saturation in ar	nplifying stages	(B) loss of gain	
(C) vibrations		(D) oscillations	
97 Which of the following	ag mothodo is used to		
traction?	ig memous is used to	o control speed of 25 kV,	OHz single phase
(A) Reduced current	method		
(B) Tap changing cor			
(C) Series parallel op	eration of motors		
(D) All of the above			
00 Industion temporingle	1	,	
98. Induction type single (A) kW			
(A) K W	(B) VA	(C) kWh	(D) VAR
99.In majority of instrumen	ts damping is provid	ed by	
(A) fluid friction		(B) spring	
(C) eddy currents		(D) None of the above	e
100.A network that does not	t have either voltage	or current sources is calle	d
(A) Active network	· · · · · · · · · · · · · · · · · · ·	(B) Passive network	u
(C) Resistive network		(D) Dummy network	
		· · · · · · · · · · · · · · · · · · ·	