APEEJAY SCHOOL, PITAMPURA FIRST TERMINAL EXAMINATION, 2016-17 CLASS XII PHYSICS

Time allotted : 3 hrs

General Instructions:

(i) All questions are compulsory

(ii) Question numbers 1 to 5 are very short answer questions and carry 1 mark each.

(iii) Question numbers 6 to 12 are short answer questions and carry 2 marks each

(iv) Question numbers 13 to 24 are also short answer questions and carry 3 marks each.

(v) \widetilde{Q} uestion number 25 to 27 are long answer questions and carry 5 marks each.

1.	 A device 'X' is connected to an ac source V=V₀sinωt. The variation of voltage, current and power in one complete cycle is shown in the figure. (i) Which curve shows power consumption over a full cycle? (ii) Identify the device 'X'. 	1
2.	A point charge +Q is placed at a point O as shown in the figure. Is the potential difference V_{A} - V_{B} positive, negative or zero? Give reason.	1
3.	Magnetic field lines can be entirely confined within the core of a torroid, but not within a straight solenoid, why?	1
4.	Long distance radio broadcasts use short wave bands. Why?	1
5.	The metallic conductor is at temperature T1. The temperature of this conductor is increased to T2. How will the product of its resistivity and conductivity change? Give reason.	1
6.	Distinguish between any two types of propagation of electromagnetic waves with respect to (i) frequency range over which they are applicable (ii) communication systems in which they are used.	2
7.	Two cells of same emf E but internal resistance r_1 and r_2 are connected in series to an external resistor R as shown in the figure. What should be the value of R so that the potential difference across the terminals of the first cell becomes zero?	2

M.M: 70

	R	
8.	AB and CD are long parallel conductors separated by same distance. O is the midpoint between them. Net magnetic field due to current in the two conductors is B. The current in wire AB is now switched off. Calculate the magnetic field at O in this case in terms of B.	2
	A compass needle, free to turn in the vertical plane orients itself with its axis vertical at a certain place on the earth. Find out the values of (i) horizontal component of earth's magnetic field and (ii) the angle of dip at the place.	
9.	A rectangular wire frame shown in the figure, is placed in a uniform magnetic field directed upwards and normal to the plane of the paper. The part AB is connected to a spring. The spring is stretched and released when the wire AB has come to position A'B' (t=0). How would the induced emf vary with time? Neglect damping.	2
10.	In the figure shown, calculate the total flux of the electrostatic field through the spheres S_1 and S_2 . The wire AB of length 'l' shown here has a linear charge density λ given by $\lambda = kx$ where x is the distance measured along the wire, from the end A.	2

22	Two calls of amf a and a and internal resistance r and r respectively are connected in	2
23.	Two cells of emit ε_1 and ε_2 and internal resistance r_1 and r_2 respectively are connected in	3
	parallel as shown in the figure.	
	Deduce the expression for	
	(1) the equivalent emf of the combination	
	(ii) the equivalent resistance of the combination and	
	(111) the potential difference between the two points A and B.	
	C. P	
	I_1	
	AB	
	I ₂ I ₂	
	lr .	
	°2,′2	
24	(i) Name the machine which uses crossed electric and magnetic fields to accelerate the	3
	ions to high energies. With the help of the diagram explain the resonance condition.	
	(ii) What will happen to the motion of the charged particle if the frequency of the	
	alternating voltage is doubled?	
25.	(a) An ac source of voltage $V=V_0$ sin ω t is connected to a series combination of L,C and R.	5
	Use the phasor diagram to obtain the expressions for the impedance of the circuit and the	
	phase angle between voltage and current. Find the condition when the current will be in	
	phase with the voltage. What is the circuit in this condition called?	
	(b) In a series LR circuit $X_L = R$ and power factor of the circuit is P_1 . When capacitor with	
	capacitance C such that $X_L = X_C$ is put in series, the power factor becomes P ₂ . Calculate	
	P_1/P_2 .	
	OR	
	State the law which relates to generation of induced emf in a conductor being moved in a	
	magnetic field.	_
	Apply this law to obtain the expression for the induced emf when one rod of a	5
	rectangular conductor is free to move in a uniform, time independent and normal	
	magnetic field.	
	Apply the concept of Lorentz (magnetic) force acting on a moving charge to justify the	
	expression obtained above.	
26	(i) Use Gauss's Law to find the electric field due to uniformly charged infinite plane	5
20.	(i) Use Gauss's Law to find the electric field due to uniformity charged minine plane	5
	sheet. What is the direction of held for positive and negative charge densities?	
	(11) Find the ratio of potential differences that must be applied across the parallel and	
	series combination of two capacitors C_1 and C_2 with their capacitances in the ratio of 1:2	
	so that the energy stored in the two cases becomes the same.	
	OR	E
	(i) If two similar large plates each of area A having surface charge densities $+\sigma$ and $-\sigma$	5
	are separated by a distance 'd' in air find the expressions for	
	(a) field at the points between the two plates and on outer sides of the plates. Succify	
	(a) there at the points between the two plates and on outer sides of the plates. Specify	
	the direction of the field in each case.	
	(b) the potential difference between the plates.	

