K.S.E.E.B., Malleshwaram, Bangalore SSLC Model Question Paper-2 (2015)
 MATHEMATICS

Max Marks: 80
Time: 2 Hours 45 minutes
No. of Questions: 40
Code No. : 81E
Four alternatives are given for the each question. Choose the correct alternative and write the complete answer along with its alphabet in the space provided.
$1 \operatorname{mark} \times 8=8$

1. $(1+\cos \theta)(1-\cos \theta)$ is equal to
(a) $\sin ^{2} \theta$
(b) $\tan ^{2} \theta$
(c) 1
(d) 0
2. If $P=\{2,3,4\}$ and $Q=\{3,5,7\}$ then P / Q is equal to
(a) $\{3,7\}$
(b) $\{2,4\}$
(c) $\{3\}$
(d) $\{2,4,3,7\}$
3. If $n P_{2}=90$ then n is equal to
(a) 90
(b) 45
(c) 20
(d) 10
4. If $x=1$ is a zero of the polynomial $f(x)=x^{3}-2 x^{2}+4 x+K$ then the value of K is
(a) -3
(b) 3
(c) 4
(d) -4
5. $\sin A \cdot \cos A \cdot \tan A+\cos A \cdot \sin A \cdot \cot A$ is equal to
(a) $\sin ^{2} A-\cos ^{2} A$
(b) $\tan ^{2} A+\cot ^{2} A$
(c) $\sin ^{2} A+\cos ^{2} A$
(d) $\sin ^{2} A+\tan ^{2} A$
6. In the given figure, $A P B$ is tangent to the circle at the point P on the circle. $P Q$ is a chord. If $\angle B P Q=62^{\circ}$ then $\angle P R Q=$

(a) 28°
(b) 118°
(c) 124°
(d) 62°
7. If $1+2+3+$ \qquad $n=78$ then the value of n is,
(a) 13
(b) 12
(c) 11
(d) 16
8. The product of $\sqrt[3]{2}$ and $\sqrt{2}$ is
(a) $\sqrt[6]{72}$
(b) $\sqrt[6]{24}$
(c) $\sqrt[6]{16}$
(d) $\sqrt[6]{4}$

II
9. Using Euclid's division algorithm, find the HCF of 65 and 117.
10. A die is rolled. Find the probability of getting a square number.
11. Using Euler's formula verify:
$\mathrm{N}=6, \mathrm{R}=6, \mathrm{~A}=10$.
12. Verify Euler's formula for a Hexahedron.
13. The height of a right circular cylinder is 14 cm , and the radius of its base is 2 cm . Find its curved surface area.
14. Find $\sin \theta$ and $\cos \theta$ using the following figure, if $A B=24$ units, $A C=25$ units and $B C=7$ units.

15. Prove that $\sqrt{3}+\sqrt{2}$ is an irrational number.
16. If $U=\{4,8,12,16,20,24,28\}, A=\{8,16,24\}$, and $B=\{4,16,20,28\}$ verify that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
17. The arithmetic mean of two numbers is 17 and their geometric mean is 15 . Find the numbers.
18. The first term of a G.P. is 50 and the fourth term is 1350 . Find its fifth term.
19. How many 3 -digit numbers can be formed using the digits $1,2,3,4,5$ and 6 without repeating any digit? How many of these are even numbers.
20. If $n P_{r}=336$ and $n C_{r}=56$ find n and r.
21. There are 6 red, 7 white and 7 black balls in a basket. Two balls are drawn at random. Find the probability that the balls are red or both the balls are black.
22. Performance of two players is given below:

Player	Mean	SD
Arun	70	4.2
Bharath	60	3.0

Who is more consistent in performance?
23. Draw a pie chart for the following data:

Particulars	Hostel fee	College fee	Miscellaneous
Amount (Rs.)	360	120	60

24. Find the value of p so that the equation $4 x^{2}-8 p x+9=0$ has roots whose difference is 4 .
25. In $\triangle A B C . X Y \| B C$ and $X Y$ divides the triangle into two parts of equal area. Find $B X: A B$. [Hint: $\triangle A B C=2 \Delta A X Y$]

26. In the given figure:

$A D \perp B C$. Prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$.
27. $A B C D$ is a square. F is the midpoint of $A B . B E$ is one third of $B C$. If the area of $\triangle F B E$ is $108 \mathrm{~cm}^{2}$. Find the length of $A C$.
28. The line passing through the points $(2,7)$ and $(3,6)$ and parallel to a line joining $(9, a)$ and $(11,3)$. Find a.
29. Find the co-ordinates of the midpoint of the line joining the points $(-3,10)$ and $(6,-8)$.
30. Construct a pair of tangents to a circle of radius 3.5 cm from a point 3.5 cm away from the circle. Measure the length of the tangent.
31. The third term of an A.P. is 8 and the ninth term exceeds three times the third term by 2 . Find the sum of its first 19 terms.

OR

In a H.P. $T_{4}=\frac{1}{11}$ and $T_{14}=\frac{3}{23}$ find T_{19}.
32. If $\left(x^{3}+a x^{2}-b x+10\right)$ is divisible by $x^{2}-3 x+2$ find the values of a and b.

OR

Using the remainder theorem find the remainder when $P(x)=x^{3}+3 x^{2}-5 x+8$ is divided by $g(x)=x-3$. Verify the result by actual division.
33. The age of a man is twice the square of the age of his son. Eight year hence the age of the man will be 4 years more than three times the age of his son. Find their present age.

OR

Solve by completing the square $2 x^{2}+5 x-3=0$.
34. Prove that $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$.

Prove that $\sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin ^{2} 90^{\circ}+\frac{1}{8} \cot ^{2} 60^{\circ}=2$.
35. Simplify: $\frac{7 \sqrt{3}}{\sqrt{10}-\sqrt{3}}-\frac{2 \sqrt{5}}{\sqrt{6}+2}$.
36. The tangents drawn from an external point to a circle (i) are equal, (ii) subtend equal angles at the centre.
37. From the top of a cone of base radius 24 cm and height 45 cm , a cone of slant height 17 cm is cutoff. What is the volume of the remaining frusturn of the cone?

OR

(a) The radii of two right circular cylinders are in the ratio 2:3 and the ratio of their curved surface area is $5: 6$. Find the ratio of their heights.
(b) A right circular cone is of height 3.6 cm and radius of its base is 1.6 cm . It is melted and recast into a right circular cone with radius of its base 1.2 cm . Find the height of the cone so formed.
38. State and prove basic proportionality theorem.
39. Solve graphically $x^{2}-3 x-10=0$.
40. Construct a transverse common tangent to two circles of radii 3 cm and 2 cm with their centres 9 cm apart. Measure the length of the tangent and verify.

