

ST. ANTHONY'S COLLEGE, SHILLONG

ENTRANCE TEST FOR ADMISSION INTO GRADUATE PROFESSIONAL COURSES 2007

Computer Science

:

:

:

DATE TIME DURATION 10 May 2007 2:30 pm 2½ hours

Part A: Mathematical Aptitude (40 Marks) Cross (x) the appropriate option given for each question								
Module I (Each correct answer will be awarded 2 marks, while 0.5 mark will be deducted for every wrong answer)								
If ω is a cube root of unity, then a root of the following equation								
		is						
$\Box x = 1$	$\Box x = \omega$		$\Box x = 0$					
If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} =$ \Box abc	$\vec{c \times a}$, then $\Box -1$	0	2					
If are the r	oots of $ax^2 + bx + c = 0$, t	hen $\alpha\beta^2 + \alpha^2\beta + \alpha\beta$	equals					
$\Box \ \frac{c(a-b)}{a^2}$	0		None of these options					
A student is to ar the first five que	nswer 10 out of 13 questions stions. The number of choic	s in an examination such ces available to him is	that he must choose at least 4 from					
<u> </u>		L 196	<u> </u>					
lf	and the angle between \overline{a} :	and is $\frac{\pi}{6}$, then	equals					
48	☐ 16	$\Box \overline{a}$	None of these options					
Let $R = \{(1,3), (4, $	4,2), (2,4), (2,3), (3,1)} be a	relation on the set A =	= {1,2,3,4}. The relation R is					

١.

2.

3.

4.

5.

6.

reflexive

7. The eccentricity of an ellipse, with its centre at the equation of the ellipse is $\begin{vmatrix} 4x^2 + 3y^2 = 1 \\ 1 \end{vmatrix} 3x^2 + 4y^2 = 12 \begin{vmatrix} 2x^2 & 2z \\ 2z \\ 2z \end{vmatrix} x + \omega^2 = 1 \\ 2z \\ 4x^2 + 3y^2 x + 2z \end{vmatrix} = 0$ (1) $3x^2 + 4y^2 = 12 \begin{vmatrix} 2z \\ 2z \\ 2z \\ 3z \end{vmatrix} = 0$ (2) $3x^2 + 4y^2 = 1 \\ 3x^2 + 4y^2$

not symmetric a function

transitive

9.	$\int \frac{dx}{1+e^{-x}}$ is equal to				
	$\log k(1+e^x)$	$\log k(1+e^{-x})$	$\log ke^x$	$\Box \frac{1}{(1+e^{-x})^2}$	

Module II (Each correct answer will be awarded 3 marks, while 0.75 mark will be deducted for every wrong answer)

10.	The coefficient of the middle term in the binomial expansion in powers of x of and of $(1 - \alpha x)^6$ is the same if α equals						
		$\Box \frac{10}{3}$	$\Box \frac{-3}{10}$				
11.	If are three no	n-coplaner vectors, the	n	equals			
	$\Box 3\overline{u}.\overline{v}\times\overline{w}$	0	$\Box \overline{u}.\overline{v} \times \overline{w}$				
12.	If the function		where $a > 0$, attains	its maximum and minimum at			
	p and respectively set	uch that , then ,	<i>a</i> equals				
		3		2			
13.	The probability that A contradict each other v	speaks truth is $\frac{4}{5}$, whil when asked to speak on	e this probability for B i a fact is	s $\frac{3}{4}$. The probability that they			
	$\Box \frac{4}{5}$	$\Box \frac{1}{5}$	$\Box \frac{7}{20}$	$\Box \frac{3}{20}$			
14.	The two lines $x = ay + aa' + cc' + 1 = 0$ aa' + bb' + cc' = 0	b, z = cy + d and $x = d$	a'y+b', z = c'y+d' wil aa'+bb'+cc'+ (a+a')(b+b')(a)	I be perpendicular if and only if 1=0 c+c')=0			
15.	Let $f(x) = 4$ and $f'(x) = 4$	$(x) = 4$. Then $\lim_{x \to 2} \frac{xf}{x}$	$\frac{1}{30}$ $\frac{1}{20}$	$(2a\vec{v}) + 1$			
	2	□ -2	□ -4	3			

Module III (A correct answer will be awarded 4marks, while I mark will be deducted for a wrong answer)

16. The equation of the straight line passing through the point (4,3) and making intercepts on the co-ordinate axes whose sum is -1 is

$\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$	$\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
$\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$	$\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$

Part B: Logical Reasoning (60 Marks)

Write the steps to arrive at the correct answer to the following questions. The answer alone is not sufficient. Each correct complete answer will carry 4 marks. There is NO NEGATIVE MARKING for this part.

17. Study the following sequence of letter-symbol-digits

MQ2J%KL97E#BG > 4O3IFN6CIR\$5V.

What should come in place of ? in the following sequence?

JQL, E9G, O>F, ?

18. Find the missing number in the following sequence 2350, 3207, 4271, ?, 6912

19. Suppose Mr. A is walking in the East direction. After walking 3 Km, he turns right by 45 degrees and walks 2.82 Km. Then, he turns left by 45 degrees and walks 2Km. Then, he turns left by 90 degrees and walks 1 Km. In which direction is he walking and how far is he from the starting point? ($\sqrt{2} = 1.41$)

20. What will be the next figure in the following sequence?

Directions for questions 21 and 22: A marketing company requires a qualified engineer with a management degree. The candidate must

- i) be a B.Tech graduate with at least 55% marks.
- ii) Hold an MBA degree with a minimum of 50% marks.
- iii) Have secured at least 55% marks in the written in the Higher Secondary Examination. This condition will be relaxed up to 5% if the candidate has two years' experience of working with a reputed company.
- iv) Should have at least one year's experience as an engineer.
- v) If he fulfills all other conditions except (iv) above but has an additional diploma on Computers or I.T. , his case is to be referred to the General Manager.
- vi) If he fulfills all other criteria but has a Marketing degree instead of the condition given at (iii) above his case is to be referred to the Managing Director.
- vii) The age should not exceed 30 for any candidate.
- viii) First class is equivalent to 60% or higher in an examination.

Based on the conditions given above and the information contained in the following questions, you have to take a decision regarding each case without making any subjective preference or assumptions. Your decision will be one of the following:

- a) Selected
- b) Not to be selected
- c) Cannot decide, if data is insufficient
- d) Referred to the General manager
- e) Referred to the Managing Director

Give justification for your answer.

21. Krishna lyer is 25. He is a B.Tech in Mech. Engg. from Amity with 62% marks and did an additional diploma in I.T. concurrently. An MBA with first class from IIM, Banagalore, he has no experience of working as yet.

22. Roop Kumar passed his higher secondary examination with a first class in 1996 at the age of 17. He completed his B.Tech in Instrumentation with 53% marks. He did his MBA securing 58% marks. He has been working as production manager in ABC Industries for the last two and a half years.

Directions for questions 23 and 24: An electronic machine, when fed with random numbers rearranges them in a particular order following certain rules sequentially. The step-wise process of rearrangement of a given output of numbers is given below-

Input:	67	43	58	96	87	37	16	09
Step I	96	67	43	58	87	37	16	09
Step II	96	87	67	43	58	37	16	09
Step III	96	87	67	58	43	37	16	09

And for the given input, step III is the last step.

23. For the input

	08	11	81	97	76	65
find the se	eries at					

24. If the input is

	72	86	97	27	52	04		
and the step is								
	97	86	72	27	52	04		
what is the number of this step?								

Directions for questions 25 and 26: Abdul, John and Shelly go for dinner to China Town, a famous restaurant at Police Bazaar. Each orders either Chicken Chow or Vegetable Fried Rice.

- i) If Abdul orders Chicken Chow, then John orders what Shelly has ordered.
- ii) If John orders Chicken Chow, then Abdul orders the dish that Shelly doesn't order.
- iii) If Shelly orders Vegetable Fried Rice, then Abdul orders the dish that John ordered.

25. Who among the three always orders the same dish?

26. If Shelly orders Vegetable Fried Rice, what is the dish ordered by John?

Directions for questions 27 and 28:

- There is a family of six members A, B, C, D, E and F.
- There are two married couples in the family and the family members represent three generations.
- Each member has a distinct choice of colour amongst green, yellow, black, red, white and pink
- No lady member likes either green or white.
- C, who likes black colour is the daughter-in-law of E.
- B is the brother of F and son of D and likes pink.
- A is the grandmother of F, and F does not like red.
- The husband has a choice of green colour, his wife likes yellow.

- 27. Which is the colour preference of A?
- 28. How many male members are there in the family? Name them.

Directions for questions 29 and 30:

- Eleven students A, B, C, D, E, F, G, H, I, J and K are sitting in the first row of the class facing the teacher.
- D who is to the immediate left of F is second to the right of C.
- A is second to the right of E, who is at one of the ends.
- J is the immediate neighbor of A and B and third to the left of G.
- H is to the immediate left of D and third to the right of I.

- 29. Who is sitting in the middle of the row?
- 30. Who are the group of friends sitting to the right of G.
- 31. A ← B, means store the value of B into A and A ← A+B, means add the values of A and B and store the result into A in that order. If initial values of A and B are 10 and 15 respectively, then what will be the final value of A and B after the following steps?

$$A \leftarrow (A \times 2) + 5$$
$$B \leftarrow (B \times 7) - A$$
$$A \leftarrow B - A$$
$$B \leftarrow A + B$$

Here +, - and \times have their usual meaning. The operations enclosed in parentheses are executed first.