PRACTICE SET

A Whole Content Based Test for Class 9th Mathematics Asiad

- **1.** Which one of the following is divisible by $(1 + a + a^5)$ and $(1 + a^4 + a^5)$ individually? A $(a^2 + a + 1) (a^3 a^2 + 1) (a^3 a + 1)$ B $(a^4 + a + 1) (-a^3 a^2 + 1) (a^3 + a + 1)$ C $(a^2 + a + 1) (a^3 + a^2 + 1) (a^3 + a + 1)$ D $(a^4 a + 1) (a^3 + a^2 + 1) (a^3 + a 1)$
- **2.** The line passing through the points (-2, 8) and (5, 7)
 - A cuts Y-axis only
 - B cuts both the axes
 - C does not cut any axis
 - **D** cuts X-axis only
- **3.** In a DABC, if AB is the longest side, then for any point *P* in the interior of the triangle, which of the following is correct?
 - A PA + PB < PC
 - B PA + PB = PC
 - c PA + PB > PC
 - D Can't say
- 4. If parallel sides of a trapezium are A and B, respectively. Then, the line joining the mid points of its non-parallel sides will be

5. In the following figure, the value of *x* is

- A 60° **B** 40°
- **c** 20°
- D None of the above

6. Area of an isosceles trjangle is given by

$$A = \frac{1}{4} b \sqrt{\frac{2}{4}a^2 - b^2}$$

Here, a refers to the

- A equal side
- B unequal side
- **C** any side
- D None of the above
- **7.** A race car driver kept track of the number of laps he drove in the past 5 days. If median of

the numbers is x, then the day corresponding to x+ 3 is

- 8. 70 tickets of a lucky draw were sold. If the probability of Krish winning the draw is
- 14

then the number of tickets bought by Krish is

c 15 **9.** The value of

A 5

 $\begin{array}{c} \underset{\varsigma}{\overset{a^2b^2}{\underbrace{}}} & \underset{\varsigma}{\overset{a^2b^2}{\underbrace{}}} & \underset{\varsigma}{\overset{a}{\underbrace{}} \times x \ 1/b} & \underset{\varsigma}{\overset{b^2c^2}{\underbrace{}} & \underset{\varsigma}{\overset{a}{\underbrace{}} \times x \ 1/c} & \underset{\varsigma}{\overset{a^2c^2}{\underbrace{}} & \underset{\varsigma}{\overset{a}{\underbrace{}} \times x \ 1/c} & \underset{\varsigma}{\overset{a^2c^2}{\underbrace{}} & \underset{\varsigma}{\overset{a}{\underbrace{}} & \underset{\varsigma}{\overset{a}{\underbrace{}} & \underset{\varsigma}{\overset{s}{\underbrace{}} & \underset{\varsigma}{\overset{s}{\underbrace{}} & \underset{s}{\overset{s}{\underbrace{}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}{\underset{s}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\overset{s}}} & \underset{s}{\underset{s}}} & \underset{s}{\overset{s}{\underset{s}}} & \underset{s}{\underset{s}}} & \underset{s}{\underset{s}}} & \underset{s}{\underset{s}}{\overset{s}} & \underset{s}{\underset{s}}} & \underset{s}{\underset{s}} & \underset{s}{\underset{s}}{\underset$ èx 1/bø èx ¹/¢ø èx 1/aø ΑÕ **B** 1 **C** x1/a+1/b+1/c Dx ab + bc + ca

PRACTICE SET 1

10. Write the equivalent polynomial. A cosmetic company needs a storage box that has twice the volume of its largest box. Let its largest box measures 4 inch by 5 inch by 3 inch. If the larger box needs to be made larger by adding the same amount to each dimension. Then, the new expression will be

A
$$x^{3} + 12x^{2} + 47x - 60 = 0$$

B $x^{4} + 12x^{3} + 47x^{2} - 60x + 120 = 0$
C $x^{3} + 12x^{2} + 47x + 60 = 0$
D None of the above

11.

In the above figure, OB and $O \notin B$ are internal and external bisectors respectively, then which of the following is true?

 $A \quad \textcircled{D} BOC = \textcircled{D} BO \notin C + \textcircled{D}A$

12.

In the above figure, if $AB^{A}BC$, then x is equal to

A 18° **B** 22° **C** 25° **D** 32°

13. ASSERTION (A) If ABCD is a rhombus in which $D C = 60^\circ$, then $AC : BD = \sqrt{3} : 1$.

REASON (R) All sides of rhombus are equal and diagonals of rhombus are perpendicular to each other.

Which of the following is true?

- A (A) is true and (R) is the correct explanation of (A)
- ${\sf B}$ (A) is true and (R) is not the correct explanation of (A)
- ${\tt C}\ \, (A) \ \, \mbox{is true and } (R) \ \, \mbox{is false}$
- D Both (A) and (R) are false

- 14. If AB is a line segment, C is a point such that $\oint ACB = 90^{\circ}$ and D is a point such that $\oint ADB = 90^{\circ}$. Then, which of the following can be true?
 - A ABCD is a rhombus.
 - **B** *ABCD* is a parallelogram.
 - **c** *ABCD* is a cyclic quadrilateral.
 - D Can't say

15. The minute hand of a clock is $\frac{x}{2}$

long. Then, the area of the face of the clock described by the minute hand in 35 min, is

A
$$\frac{11 x^2}{24}$$
 B $\frac{7 x^2}{24}$
C $\frac{5 x^2}{24}$ D $\frac{13 x^2}{24}$

16. Match the following :

	List I		LIST II
A	A shopkeeper recently sold 15 doughnuts of which 3 were chocolate frosted. What is the probability that the next doughnut will be a chocolate frosted doughnut?	i.	4/5
В	Kurt is tossing bean bags at a target. He hits the target 7 out of his 14 tries. What is the probability that Kurt's next toss will be a hit?	ii.	1/5
C	An ice-cream shop, 3 of the last 15 cones sold had vanilla ice-cream. What is the probability that the next sold will not be a vanilla?	iii.	1/2
	Codes		

	-				
		А	В	С	
	Α	(i)	(ii)	(iii)	
	В	(iii)	(i)	(ii)	
	С	(iii)	(ii)	(i)	
	D	(ii)	(iii)	(i)	
17. <u>7</u> . (3 +	√2 ⊦√	 	$\frac{2\sqrt{5}}{6}$	 5)(^	$\frac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}$ is
equ	ıal	to			
	Α	0			
	В	1			
	С	2			
	D	None o	f the ab	ove	

MATHEMATICS Asiad CLASS IX

18. The given values of x and y are thought to satisfy a linear equation y = 4 x - 2. When we draw the graph using the values of x and y as given in the table.

x	1	2
Y	2	6

At what point the graph of the linear equation intersects the X-axis?

A (1, 0)

B (2, 0)

c ç _ ,0

- è2 Ø
- æ1 Ö pç____,0
- è4 ø
- **19.** In a DABC, if AB = AC and the bisectors of angles *B* and *C* intersect at point *O*. Then, which of the following is true?
 - A BO = OC
 - **B** AO is bisector of **Đ**BAC
 - C OA = OB = OC
 - **D** Both (a) and (b)
- **20.** In the following figure, if AD = 12 cm, AB = 5 cm and BC = CD = 13 cm. Then, the area of quadrilateral *ABCD* is

21. In the following figure, if *MK* bisects *ĐJKL* then which of the following is incorrect?

A JM = ML

- $\mathsf{B} \;\; \mathsf{D} \; \mathsf{J}\mathsf{K}\mathsf{M} = \mathsf{D}\mathsf{L}\mathsf{K}\mathsf{M}$
- c DJML is an isosceles
- ${\tt D}~$ None of the above

22. Edward walked around two edges of a square field from *A* to *B*. Misha walked diagonally from *A* to *B*.

Approximately, what percentage of the distance Edward walked was the distance Misha walked?

Α	50%	В	71%
С	100%	D	141%

- **23.** The aggregate monthly expenditure of a family was ` 6240 during the first 3 months, ` 6780 during the next 4 months and ` 7236 during the last 5 months of a year. If the total savings during the year is ` 7080, then the average monthly income of the family is
 - A ` 7425
 B ` 7500
 C ` 8425
 D ` 8500

25.

 $17.8\ cm\ 11.6\ cm\ 10.9\ cm\ 0\ cm\ 19.7\ cm$

Josh planted five seeds which grew into plants. He recorded the height of each plant one month later. If he decides to water some plants twice a day. Then, what is the probability that he doesn't water the

-

PRACTICE SET

plant, having height more than 15 cm, twice a day?

2	3
A	в _
1	4
с <u>-</u> 5	5

 $\mathsf{P}_{\mathsf{RACTICE}} \ \mathsf{S}_{\mathsf{ET}} \ \mathsf{1}$

26. The price *p* that A make up company can charge for a certain kit is $p = 40 - 4x^2$, where *x* is the number of kits produced. It costs the make up

of kits produced. It costs the make up company \ge 15 to make each kit. Then, the polynomial (function) expressing the company's profit p by subtracting the total cost to make x kits from the total revenue is

A
$$-4x^{3} + 4x$$

B $-4x^{3} + 25x$
C $-4x^{2} + 5x$
D $-4x^{2} + 25x$

- **27.** The value of a for which of the equation 2ax + (a + 8)y = 32 has a solution (1, 2) is
 - **A** 4 **B** 6
 - в о С 8
 - D 10

28.

In the above figure, if AB||CD||EF and $EF||L_1$, then the values of *x* and *y* are respectively

- $\textbf{A}~90^\circ$ and 80°
- **B** 98° and 88°
- C 98° and 80°
- D 90° and 88°

